Point Estimation

□ Estimator and Point Estimation
□ Confidence Interval
\Box The effect of sample size for an estimate
Suppose that the random variables X_1, X_2, \dots, X_n , whose joint distribution is assumed given excep for an unknown parameter θ , are to be observed. The problem of interest is to use the observed values to estimate θ .
\Diamond parameter space - $\Omega = \{all \ \theta\}$
\Diamond estimator - a random variable (or vector)
\Diamond estimate - a value (vector) derived from a realization
$\Diamond \ (log)$ -likelihood function - $\prod_{i=1}^n f(x_i; \theta)$.
♦ maximum likelihood estimator (estimate)[mle]
Definition: If $E[u(X_1, X_2,, X_n)] = \theta$, the statistic, $u(X_1, X_2,, X_n)$ is called an un biased estimator of θ . Otherwise, it is said to be biased.
\Diamond parameter estimation by <i>method of moments</i> .

Maximum Likelihood Estimation (MLE)

Let X_1, X_2, \ldots, X_n be a random sample with parameter(s) $\theta \in \Omega$. Observing n independent results x_1, x_2, \ldots, x_n , one wants to find a *statistic* $u(X_1, X_2, \ldots, X_n)$ (called an **estimator**) to estimate θ such that $u(x_1, x_2, \ldots, x_n)$ is close to θ .

 \Box Likelihood Function: $L(\theta) = L(\theta|x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta)$

Example 1: $X_1, X_2, \dots, X_n \sim b(1, p) \Rightarrow \widehat{p} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$

Example 2: $X_1, X_2, \dots, X_n \sim Geometric(p) \Rightarrow \widehat{p} = \frac{1}{\overline{X}} = \frac{n}{\sum_{i=1}^n X_i}$

Example 3: $X_1, X_2, \dots, X_n \sim Exponential distribution with parameter <math>\theta$, then

$$L(\theta) = \prod_{i=1}^{n} \left[\frac{1}{\theta} e^{-x_i/\theta} \right] \quad and \quad ln(L(\theta)) = \theta^{-n} + e^{-\left[\sum_{i=1}^{n} x_i\right]/\theta}$$

Solving $\frac{d\{ln(L(\theta))\}}{d\{\theta\}} = 0$, we obtain the *MLE estimator*

$$\widehat{\theta} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Example 4: $X_1, X_2, \ldots, X_n \sim N(\mu, \sigma^2)$, then

$$L(\mu, \sigma^2) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - \mu)^2/2\sigma^2} \right) \text{ and } ln(L(\mu, \sigma^2)) = -\frac{n}{2} ln(2\pi) - \frac{n}{2} ln(\sigma^2) - \sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2} e^{-(x_i - \mu)^2/2\sigma^2} \right)$$

Solving $\frac{\partial ln(L(\mu,\sigma^2))}{\partial \mu} = 0$ and $\frac{\partial ln(L(\mu,\sigma^2))}{\partial \sigma^2} = 0$, we obtain the *MLE estimators*

$$\widehat{\mu} = \overline{X}, \quad \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Confidence Intervals for Means

 \clubsuit Given a random sample $X_i \sim N(\mu, \sigma^2)$ of size n, we want to know how *close* of the *unbiased estimator*, \overline{X} , to the unknown mean μ .

$$P\left[\overline{X} - z_{\alpha/2} * \left(\frac{\sigma}{\sqrt{n}}\right) \le \mu \le \overline{X} + z_{\alpha/2} * \left(\frac{\sigma}{\sqrt{n}}\right)\right] = 1 - \alpha \tag{1}$$

$$\left[\overline{X} - z_{\alpha/2} * \left(\frac{\sigma}{\sqrt{n}}\right), \quad \overline{X} + z_{\alpha/2} * \left(\frac{\sigma}{\sqrt{n}}\right)\right] \tag{2}$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \text{ then}$$

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}$$
 (3)

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 - \left[\frac{(\overline{X} - \mu)}{\sigma/\sqrt{n}}\right]^2 \tag{4}$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$
 (5)

- \Diamond confidence intervals
- \Diamond confidence coefficient
- \diamondsuit two-sided confidence intervals
- \Diamond one-sided confidence intervals

Effect of Sample Size:

Exercises: