Test 1: Linear Algebra for ISA5305 Due by 11:00 am November 5, 2018

$Name: _$		<i>ID</i> :	Group no.:
(20 pts)(1) lower -	. '	unit $lower - \Delta$ matrices,	show that $C = AB$ is also unit

- (20 pts)(2) Let $\mathbf{w} \in R^n$ be a unit vector, that is, $\|\mathbf{w}\|_2 = 1$, and denote $\mathbf{x} \in R^n$ as $\mathbf{x} = [x_1, x_2, \dots, x_n]^t$ and $\sigma = \|\mathbf{x}\|_2$. Define a Householder matrix $G = I 2\mathbf{w}\mathbf{w}^t$.
 - (a) Show that G is symmetric, orthogonal, and $G^{-1} = G$.
 - (b) Let $\mathbf{v} = \mathbf{x} + \sigma \mathbf{e}_1$ and $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$, define $H = I 2\mathbf{u}\mathbf{u}^t$. Show that $H\mathbf{x} = -\sigma \mathbf{e}_1$.

(20 pts)(3) Let
$$A = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$$
.

- (a) Find the eigenvalues λ_1 and λ_2 of matrix A and their corresponding unit eigenvectors \mathbf{u}_1 and \mathbf{u}_2 .
- (b) Find the trace of A, tr(A), and the determinant of A, det(A).
- (c) Let $U = [\mathbf{u}_1, \mathbf{u}_2]$, find $U^t A U$.
- (d) Find the eigenvalues μ_1 and μ_2 of matrix A^{-1} .
- (e) Find the trace of A^{-1} and the determinant of A^{-1} .

(20 pts)(4) Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$. For each nonzero vector $\mathbf{x} \in \mathbb{R}^n$, the Rayleigh quotient $\rho(\mathbf{x})$ is defined by

$$\rho(\mathbf{x}) = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$$

- (a) For $\mathbf{x} = \sum_{i=1}^n c_i \mathbf{u}_i$ with $\sum_{i=1}^n c_i^2 = 1$, prove that $\rho(\mathbf{x}) = \sum_{i=1}^n \lambda_i c_i^2$
- (b) Show that $\lambda_n \leq \rho(\mathbf{x}) \leq \lambda_1$
- (c) Show that for $\mathbf{x} \neq \mathbf{0}$, $Min\{\rho(\mathbf{x})\} = \lambda_n$ and $Max\{\rho(\mathbf{x})\} = \lambda_1$

(20 pts)(5) Randomly generate a 4 by 4 matrix A with each element being an integer in [0,100], and a 4-dimensional integer column vector **b** by using matlab commands

```
A=fix(50*random('uniform',0,1,4,4))
b=fix(100*random('uniform',0,1,4,1))
```

Give simple Matlab commands to solve each of the following questions for $a \sim l$ and provide the solution.

- (a) List the matrix A and the vector **b**.
- (b) Solve \mathbf{x} for $A\mathbf{x}=\mathbf{b}$.
- (c) Find the determinant of A.
- (d) Find the rank of A.
- (e) Find $||A||_1$, $||A||_2$, $||A||_{\infty}$, respectively.
- (f) Find the characteristic polynomial of A.
- (g) Find the eigenvalues and corresponding eigenvectors of C.
- (h) Find the singular values of matrix A.
- (i) Compute the eigenvalues of A^tA .
- (j) Compute the QR-factorization for A.
- (k) Solve y for $Ry = Q^t \mathbf{b}$, with Q, R, \mathbf{b} obtained above.
- (l) Compute $\|\mathbf{x} \mathbf{y}\|_2$.