Solutions for Test 1: Linear Algebra for ISA5305

November 5, 2018

Name: <u>Instructor</u> ID: <u>Nov -5 - 2018</u>

(20 pts)(1) Let $A, B \in \mathbb{R}^{n \times n}$ be unit lower $-\Delta$ matrices, show that C = AB is also unit lower $-\Delta$.

(**Proof**) $C = [c_{ij}] = AB$ with

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

= $\sum_{k=1}^{j-1} a_{ik} b_{kj} + a_{ij} b_{jj} + \sum_{k=j+1}^{n} a_{ik} b_{kj}$

Then

$$c_{ij} = 0$$
 for $1 \le i < j \le n$ and $c_{ii} = 1$ for $1 \le i \le n$

- (20 pts)(2) Let $\mathbf{w} \in \mathbb{R}^n$ be a unit vector, that is, $\|\mathbf{w}\|_2 = 1$, and denote $\mathbf{x} \in \mathbb{R}^n$ as $\mathbf{x} = [x_1, x_2, \dots, x_n]^t$ and $\sigma = \|\mathbf{x}\|_2$. Define a Householder matrix $G = I 2\mathbf{w}\mathbf{w}^t$.
 - (a) Show that G is symmetric, orthogonal, and $G^{-1} = G$.
 - (b) Let $\mathbf{v} = \mathbf{x} + \sigma \mathbf{e}_1$ and $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}$, define $H = I 2\mathbf{u}\mathbf{u}^t$. Show that $H\mathbf{x} = -\sigma \mathbf{e}_1$.

(Proof of (b)) $\|\mathbf{v}\|_2^2 = 2\sigma^2 + 2\sigma x_1 = 2\sigma(\sigma + x_1)$ and $\mathbf{v}^t \mathbf{x} = \sigma^2 + \sigma x_1 = \sigma(\sigma + x_1)$, then $H\mathbf{x} = \mathbf{x} - (\mathbf{x} + \sigma \mathbf{e}_1) = -\sigma \mathbf{e}_1$.

(20 pts) 3. Let
$$A = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$

- (a) Find the eigenvalues λ_1 and λ_2 of matrix A and their corresponding *unit* eigenvectors \mathbf{u}_1 and \mathbf{u}_2 .
- (b) Find the trace of A and the determinant of A.
- (c) Let $U = [\mathbf{u}_1, \mathbf{u}_2]$, compute $U^t A U$.
- (d) Find the eigenvalues μ_1 and μ_2 of matrix A^{-1} .
- (e) Find the trace of A^{-1} and the determinant of A^{-1} .

Ans: $p(A) = (\lambda + 2)(\lambda + 4) = 0.$

(a) $\lambda_1 = -2$, $\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$, and $\lambda_2 = -4$, $\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$, and (b) $tr(A) = \lambda_1 + \lambda_2 = -6$ and $det(A) = \lambda_1 \times \lambda_2 = 8$. (c) $U = [\mathbf{u}_1, \mathbf{u}_2], U^{-1}AU = U^tAU = diag(-2, -4)$. (d) $\mu_1 = -\frac{1}{2}$ and $\mu_2 = -\frac{1}{4}$ for A^{-1} . (e) $tr(A^{-1}) = -\frac{3}{4}$ and $det(A^{-1}) = \frac{1}{8}$.

B-Ans: $p(B) = (\lambda - 1)^2 = 0.$

- (Ba) $\lambda_1 = \lambda_2 = 1, \, \mathbf{u}_1 = \mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$
- (Bb) $tr(B) = \lambda_1 + \lambda_2 = 2$ and $det(B) = \lambda_1 \times \lambda_2 = 1$.
- (Bc) $U = [\mathbf{u}_1, \mathbf{u}_2], U^t B U = [1, 1; 1, 1]$ and
- (Bd) $\mu_1 = 1$ and $\mu_2 = 1$ for B^{-1} .
- (Be) $tr(B^{-1}) = 2$ and $det(B^{-1}) = 1$.

(20 pts) 4. Let A be a real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$. For each nonzero vector $\mathbf{x} \in \mathbb{R}^n$, the Rayleigh quotient $\rho(\mathbf{x})$ is defined by

$$\rho(\mathbf{x}) = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$$

- (a) For $\mathbf{x} = \sum_{i=1}^{n} c_i \mathbf{u}_i$ with $\sum_{i=1}^{n} c_i^2 = 1$, prove that $\rho(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i c_i^2$
- (b) Show that $\lambda_n \leq \rho(\mathbf{x}) \leq \lambda_1$
- (c) Show that for $\mathbf{x} \neq \mathbf{0}$, $Min\{\rho(\mathbf{x})\} = \lambda_n$ and $Max\{\rho(\mathbf{x})\} = \lambda_1$

(a) Proof:

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^t \mathbf{x} = \left(\sum_{i=1}^n c_i \mathbf{u}_i\right)^t \left(\sum_{j=1}^n c_j \mathbf{u}_j\right) = \sum_{i=1}^n \sum_{j=1}^n c_i c_j \mathbf{u}_i^t \mathbf{u}_j = \sum_{i=1}^n c_i^2 = 1$$

$$\langle A\mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^t A\mathbf{x} = \left(\sum_{i=1}^n c_i \mathbf{u}_i\right)^t \left(\sum_{j=1}^n c_j A\mathbf{u}_j\right) = \sum_{i=1}^n \sum_{j=1}^n \lambda_j c_i c_j \mathbf{u}_i^t \mathbf{u}_j = \sum_{i=1}^n \lambda_i c_i^2$$

Then

$$\rho(\mathbf{x}) = \frac{\langle A\mathbf{x}, \mathbf{x} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle} = \sum_{i=1}^{n} \lambda_i c_i^2$$

(b) Proof:

$$\lambda_n \leq \lambda_i \leq \lambda_1, \quad \forall \ 1 \leq i \leq n, \quad then$$

$$\lambda_n = \sum_{i=1}^n \lambda_n c_i^2 \le \sum_{i=1}^n \lambda_i c_i^2 \le \sum_{i=1}^n \lambda_1 c_i^2 = \lambda_1$$

(c) **Proof:** In (a), let $c_1 = 1$ and $c_j = 0$, $2 \le j \le n$, then $\rho(\mathbf{x}) = \lambda_1$. By (b), $Max\{\rho(\mathbf{x})\} = \lambda_1$. Similarly, $Min\{\rho(\mathbf{x})\} = \lambda_n$

(20 pts)(5) Randomly generate a 4 by 4 matrix A with each element being an integer in [0,100], and a 4-dimensional integer column vector b by using matlab commands

```
A=fix(50*random('uniform',0,1,4,4))
b=fix(100*random('uniform',0,1,4,1))
```

Give simple Matlab commands to solve each of the following questions for $a \sim l$ and provide the solution.

- (a) List the matrix A and the vector **b**.
- (b) Solve **x** for A**x**=**b**. *Ans*: **x** = $A \setminus \mathbf{b}$
- (c) Find the determinant of A. Ans: det(A)
- (d) Find the rank of A. Ans: rank(A)
- (e) Find $||A||_1$, $||A||_2$, $||A||_{\infty}$, respectively. Ans: [norm(A, 1), norm(A, 2), norm(A, inf)]
- (f) Find the characteristic polynomial of A. Ans: poly(A)
- (g) Find the eigenvalues and corresponding eigenvectors of C. Ans: [V,D] = eig(C)
- (h) Find the singular values of matrix A. Ans: [U S V]=svd(A)
- (i) Compute the eigenvalues of A^tA . Ans: $[U,D] = eig(A^{*}A)$
- (j) Compute the QR-factorization for A. Ans: [Q R]=qr(A)
- (k) Solve **y** for R**y** = Q^t **b**, with Q, R, \mathbf{b} obtained above. Ans: **y** = $R \setminus (Q' * \mathbf{b})$
- (l) Compute $\|\mathbf{x} \mathbf{y}\|_2$. Ans: $norm(\mathbf{x} \mathbf{y}, 2)$