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Chapter 5. Distributions of Functions of Random
Variables

♣ Distributions of Functions of Random Variables

♣ Sampling Distribution Theory

♣ Random Functions Associated with Normal Distributions

♣ The Central Limit Theorem (CLT)

♣ Approximations for Discrete Distributions

♣ Limiting Moment-Generating Functions

♣ Box-Muller Transformation

♣ The Beta, Student’s t, and F Distributions

� Distributions of Functions of Random Variables

• We discuss the distributions of functions of one random variable X and the distributions
of functions of independently distributed random variables in this Chapter.

Example 1. Let X have the p.d.f. f(x) = xe−x2/2, 0 < x < ∞. Then Y = X2 has an
exponential distribution with mean 2.

Example 2. The p.d.f. of X is f(x) = θxθ−1, 0 < x < 1, 0 < θ < ∞. Then
Y = −2θln(X) has an exponential distribution with mean 2.

Example 3. Let X have a logistic distribution with p.d.f.

f(x) =
e−x

(1 + e−x)2
, −∞ < x < ∞

Then Y = 1
1+e−X has a U(0, 1) distribution.

Example 4. Let X1 ∼ b(m, p) and X2 ∼ b(n, p) be independent r.v.’s, then Y = X1+X2 ∼
b(m + n, p).
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Sampling Distribution Theory

♣ The collection of n independent and identically distributed random variables X1, X2,
. . ., Xn, is called a random sample of size n from the common distribution, e.g.,
Xj ∼ N(0, 1), 1 ≤ j ≤ n.

♣ Some functions of a random sample, called statistics, are of interest, for examples, mean
and variance. Sampling distribution theory refers to the derivation of distributions
for functions of a random sample.

Theorem 1: Let X1, X2, . . . , Xn be n independent r.v.’s with respective means {μi} and
variances {σ2

i }, then Y =
∑n

i=1 aiXi has mean μY =
∑n

i=1 aiμi and variance σ2
Y =∑n

i=1 a2
i σ

2
i , respectively.

Theorem 2: Let X1, X2, . . . , Xn be n independent r.v.’s with respective moment-generating
functions {Mi(t)}, 1 ≤ i ≤ n, then the moment-generating function of Y =

∑n
i=1 aiXi

is MY (t) =
∏n

i=1 Mi(ait).

Corollary: If X1, X2, . . . , Xn are observations of a random sample from a distribution
with moment-generating function M(t), then

(a) MY (t) =
∏n

i=1 M(t), where Y =
∑n

i=1 Xi.

(b) MX(t) =
∏n

i=1 M(t/n), where X = 1
n

∑n
i=1 Xi.

Example 1: Let Xi ∼ b(k, p) be a random sample of size n. Define Y =
∑n

i=1 Xi, then
MY (t) =

∏n
i=1(q + pet)k = (q + pet)kn.

Example 2: Let Xi ∼ Gamma(1, θ) be a random sample of size n. Define Y =
∑n

i=1 Xi,
then MY (t) =

∏n
i=1(1 − θt)−1 = 1/(1 − θt)n.

Exercises:
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Random Functions Associated with
Normal Distributions

♣ In statistical applications, it is usually assumed that the population from which a sample
is taken is N(μ, σ2).

Theorem: Let X1, X2, . . . , Xn be a random sample of size n from N(μ, σ2). Define X =
1
n

∑n
i=1 Xi, then X ∼ N(μ, σ2/n).

Theorem: Let Xj ∼ χ2(rj), 1 ≤ j ≤ n. If X1, X2, . . . , Xn are independent, then Y =∑n
i=1 Xi ∼ χ2(r1 + r2 + . . . + rn).

Theorem: Let Z1, Z2, . . . , Zn be a random sample of size n from N(0, 1), then W =
Z2

1 + Z2
2 + . . . + Z2

n ∼ χ2(n).

Corollary: Let {X ′
is} be independent random variables from N(μi, σ

2
i ), respectively, then

W =
∑n

i=1(Xi − μi)
2/σ2

i is χ2(n).

Theorem: Let {X ′
is} be observations of a random sample of size n from N(μ, σ2). Define

X = 1
n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi − X)2, then

(a) X and S2 are independent.

(b) (n−1)S2

σ2 =
∑n

i=1(Xi − X)2/σ2 ∼ χ2(n − 1).

Example 1: Let X1, X2, X3, X4 be a random sample of size 4 from the normal distribution
N(76.4, 383). Then

(a) U =
∑n

i=1(Xi − 76.4)2/383 ∼ χ2(4), P (0.711 ≤ U ≤ 7.779) = 0.90 - 0.05 =0.85.

(b) W =
∑n

i=1(Xi − X)2/383 ∼ χ2(3), P (0.352 ≤ W ≤ 6.251) = 0.90 - 0.05 =0.85.

Theorem: Let Xi ∼ N(μi, σ
2
i ), 1 ≤ i ≤ n, be independent. Define Y =

∑n
i=1 aiXi, then

Y ∼ N(
∑n

i=1 aiμi,
∑n

i=1 a2
i σ

2
i ).
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The Central Limit Theorem

Theorem: Let X1, X2, . . . , Xn be a random sample of size n from N(μ, σ2). Define X =
1
n

∑n
i=1 Xi, then X ∼ N(μ, σ2/n).

Theorem: Let X be the mean of a random sample X1, X2, . . . , Xn of size n from a distri-
bution with mean μ and variance σ2. Define Wn = (X − μ)/(σ/

√
n). Then

(a) Wn = (
∑n

i=1 Xi − nμ)/(
√

nσ)

(b) P (Wn ≤ w) ≈ ∫ w
−∞

1√
2π

e−z2/2dz = Φ(w).

(c) Wn ∼ N(0, 1) as n → ∞.

Example 1: Let X1, X2, . . . , Xn be a random sample of size n from a χ2(1). Define Y =∑n
i=1 Xi. Then

(a) Y ∼ χ2(n).

(b) (Y − n)/
√

2n ≈ N(0, 1).

Example 2: Let X1, X2, . . . , Xn be a random sample of size n from a U(0, 1). Define
Y =

∑n
i=1 Xi. Then

(Y − 0.5n)/
√

n/12 ≈ N(0, 1).

Example 3: Let X1, X2, . . . , Xn be a random sample of size n from a Bernoulli(p). Define
Y =

∑n
i=1 Xi. Then

(a) Y ∼ b(n, p).

(b) (Y − np)/
√

np(1 − p) ≈ N(0, 1).

Example 4: Let X1, X2, . . . , Xn be a random sample of size n from an exponential distri-
bution with mean θ. Define Y =

∑n
i=1 Xi. Then

(a) Y ∼ Gamma(n, θ).

(b) (Y − nθ)/
√

nθ2 ≈ N(0, 1).
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Approximations for Discrete Distributions

♣ Use the normal distribution to approximate probabilities for certain discrete-type dis-
tributions.

Example 1: Let Y ∼ b(10, 1/2). Then

P (3 ≤ Y < 6) = P (2.5 ≤ Y ≤ 5.5)
= Φ(0.316) − Φ(−1.581)
= 0.6240 − 0.0570
= 0.5670(0.5683 by Table II).

(1)

Example 2: Let X1, X2, . . . , Xn be a random sample of size n from a Poisson(λ). Define
Y =

∑n
i=1 Xi. Then

(Y − nλ)/
√

nλ ≈ N(0, 1).

Example 3: Let Y ∼ Poisson(λ = 20). Then

P (16 < Y ≤ 21) = P (16.5 ≤ Y ≤ 21.5)

= P [(16.5 − 20)/
√

20 ≤ (Y − 20)/
√

20 ≤ (21.5 − 20)/
√

20)]
= Φ(0.335) − Φ(−0.783) = 0.4142

(2)
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Limiting Moment-Generating Functions

Theorem: If a sequence of moment-generating functions approaches a certain one, say,
M(t), then the limit of the corresponding distribution must be the distribution cor-
responding to M(t).

Example 1: Let Y ∼ b(50, 0.04) and let λ = np = 50 × 0.04 = 2. Then

P (Y ≤ 1) = 0.400

P (Y ≤ 1) ≈ 0.406 by a Poisson approximation.
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Simulating Continuous Distributions

Theorem 5.1-2 Let X have the cumulative distribution function (c.d.f.) F (x) of the
continuous type that is strictly increasing (i.e., F (t) > F (s) if t > s) in on the
support a < x < b. Then the r.v. Y = F (X) has a uniform distribution U(0, 1).

Proof Since F (a) = 0 and F (b) = 1. For 0 < y < 1, we have

P (Y ≤ y) = P (F (x) ≤ y) = P (X ≤ F−1(y))

= F (F−1(y)) = y

Thus, Y has a uniform distribution U(0, 1).

• Simulating an exponential distribution f(x) = 1
2
e−x/2, 0 < x < ∞.

(1) Y = F (X) = 1 − e−X/2 ∼ U(0, 1),

(2) Generate a y from U(0, 1) and let y = 1 − e−x/2

(3) Then x = −2 × ln(1 − y + ε),

(4) Repeat steps (2) and (3) for the sample size you request.
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Example 5.2-6: Box-Muller Transformation

Box-Muller Transformation Let {X1, X2} be a random sample from U(0,1), define

Z1 =
√−2lnX1cos(2πX2) and Z2 =

√−2lnX1sin(2πX2).

or, equivalently

X1 = exp
(
−Z2

1+Z2
2

2

)
= e−q/2 and X2 = 1

2π
arctan

(
Z2

Z1

)
,

which has the Jacobian

J =

∣∣∣∣∣∣∣
−z1e

−q/2 −z2e
−q/2

−z2

2π(z2
1+z2

2)
z1

2π(z2
1+z2

2)

∣∣∣∣∣∣∣ = − 1

2π
e−q/2.

Since the joint p.d.f. of X1 and X2 is f(x1, x2) = 1, 0 < x1, x2 < 1,

hence the joint p.d.f. of Z1 and Z2 is

g(z1, z2) = |Jx1,x2| = 1
2π

exp[−(z1
2 + z2

2)/2], −∞ < z1, z2 < ∞.
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The Beta Distribution

Beta f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 < x < 1, α, β ∈ N

Example Let X1 and X2 have independent gamma distribution with parameters α, θ and
β, θ, respectively. That is the joint probability density function (p.d.f.) of X1 and
X2 is

f(x1, x2) =
1

Γ(α)Γ(β)θα+β
xα−1

1 xβ−1
2 Exp

(
−x1 + x2

θ

)
, 0 < x1, x2 < ∞, α, β ∈ N

Consider

Y1 =
X1

X1 + X2
, Y2 = X1 + X2

or, equivalently,
X1 = Y1Y2, X2 = Y2 − Y1Y2

The jacobian is

J =

∣∣∣∣∣ y2 y1

−y2 1 − y1

∣∣∣∣∣ = y2(1 − y1) + y1y2 = y2.

Thus, the joint p.d.f. of Y1 and Y2 is

g(y1, y2) = y2
1

Γ(α)Γ(β)θα+β
(y1y2)

α−1(y2 − y1y2)
β−1e−y2/θ,

where 0 < y1 < 1 and 0 < y2 < ∞.

g(y1) =
yα−1

1 (1 − y1)
β−1

Γ(α)Γ(β)

∫ ∞

0

yα+β−1
2

θα+β
e−y2/θdy2.

In particular, when θ = 1, we have a beta distribution

g(y1) =
Γ(α + β)

Γ(α)Γ(β)
yα−1

1 (1 − y1)
β−1, 0 < y1 < 1.

What is E(Y1) and V ar(Y1)?
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Figure 1: Beta Distributions.

Student’s t and F Distributions

Random variables whose space are intervals or a union of intervals are said to be of the
continuous types. The p.d.f. of a r.v. X of continuous type is an integrable function f(x)
satisfying

(a) f(x) > 0, x ∈ R

(b)
∫
R f(x)dx = 1

(c) The probability of the event X ∈ A is P (A) =
∫
A f(x)dx

Student’s t Let Z ∼ N(0, 1) and V ∼ χ2(r) be two independent random variables. Define

T = Z/
√

V/r. Then T has a t-distribution with p.d.f.

f(t) = Γ[(r+1)/2]√
πrΓ(r/2)

1
(1+t2/r)(r+1)/2 , −∞ < t < ∞

F-distribution Let U ∼ χ2(r1) and V ∼ χ2(r2) be two independent random variables.
Define W = (U/r1)/(V/r2). Then W has an F -distribution with p.d.f.

f(w) = Γ[(r1+r2)/2](r1/r2)r1/2

Γ(r1/2)Γ(r2/2)
x(r1/2)−1

(1+r1w/r2)(r1+r2)/2 , 0 < w < ∞
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Proof of the Central Limit Theorem

Theorem: Let X1, X2, . . . , Xn be a random sample of size n from N(μ, σ2). Define X =
1
n

∑n
i=1 Xi, then X ∼ N(μ, σ2/n).

Theorem: Let X be the mean of a random sample X1, X2, . . . , Xn of size n from a distri-
bution with mean μ and variance σ2. Define Wn = (X − μ)/(σ/

√
n). Then

(a) Wn = (
∑n

i=1 Xi − nμ)/(
√

nσ)

(b) P (Wn ≤ w) ≈ ∫ w
−∞

1√
2π

e−z2/2dz = Φ(w).

(c) Wn ∼ N(0, 1) as n → ∞.

(Proof)

E[exp(tWn)] = E
{
exp

[(
t√
nσ

)
(
∑n

i=1 Xi − nμ)
]}

= E
{
exp

[(
t√
n

) (
X1−μ

σ

)
+ · · ·+

(
t√
n

) (
Xn−μ

σ

)]}

= E
{
exp

[(
t√
n

) (
X1−μ

σ

)]}
· · ·E

{
exp

[(
t√
n

) (
Xn−μ

σ

)]}
,

which follows from the independence of X1, X2, · · · , Xn. Then

E[exp(tWn)] =
[
M
(

t√
n

)]n
, − h < t√

n
< h,

where
M(t) = E

{
exp

[
t
(

Xi−μ
σ

)]}
, − h < t < h

is the common moment-generating function of each

Yi =
Xi − μ

σ
, i = 1, 2, · · · , n.

since E(Yi) = 0 and E(Y 2
i ) = 1, it must be that

M(0) = 1, M ′(0) = E
(

Xi − μ

σ

)
= 0, M”(0) = E

[(
Xi − μ

σ

)2
]

= 1

Hence, using Taylor’s formula with a remainder, we know that there exists a number
t1 between 0 and t such that

M(t) = M(0) + M ′(0)t +
M ′′(t1)t2

2
= 1 +

M ′′(t1)t2

2
.
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Adding and subtracting t2/2, we have

M(t) = 1 +
t2

2
+

]M ′′(t1) − 1]t2

2
.

Using this expression of M(t) in E[exp(tWn)], we can represent the moment-generating
function of Wn by

E[exp(tWn)] =
{
1 + 1

2

(
t√
n

)2
+ 1

2
[M ′′(t1) − 1]

(
t√
n

)2
}n

=
{
1 + t2

2n
+ [M ′′(t1)−1]t2

2n

}n
, −√

nh < t <
√

nh,

where now t1 is between 0 and t/
√

n. Since M ′′(t) is continuous at t = 0 and t1 → 0
as n → ∞, we have

limn→∞[M ′′(t1) − 1] = 1 − 1 = 0

Thus,

limn→∞E[exp(tWn)] = limn→∞
{
1 + t2

2n
+ [M ′′(t1)−1]t2

2n

}n

= limn→∞
{
1 + t2

2n

}n
= et2/2

for all real t. We know that et2/2 is the moment-generating function of the standard
normal distribution, N(0, 1). Therefore, the limiting distribution of

Wn =
X − μ

σ/
√

n
=

∑n
i=1 Xi − nμ√

nσ
=

∑n
i=1 Xi − nμ√

nσ2
−→ N(0, 1) as n → ∞.
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Order Statistics

� If X1, X2, · · · , Xn are observations of a random sample of size n from a continuous-type
distribution whose p.d.f.is f(x) and c.d.f. is F (x), and let the random variables

Y1 < Y2 < · · · < Yn or X(1) < X(2) < · · · < X(n) (3)

denote the order statistics of this sample, that is,

Y1 is the smallest of X1, X2, · · · , Xn

...

Yr is the r − th smallest of X1, X2, · · · , Xn

...

Yn is the largest of X1, X2, · · · , Xn

Let f be defined in (a, b) so that F ′(x) = f(x), for x ∈ (a, b), 0 < F (x) < 1, x ∈ (a, b)
and F (a) = 0, F (b) = 1. Then we have

Gr(y) = P (Yr ≤ y) =
∑n

k=r

(
n
k

)
[F (y)]k[1 − F (y)]n−k

=
∑n−1

k=r

(
n
k

)
[F (y)]k[1 − F (y)]n−k + [F (y)]n

Thus the p.d.f. of Yr could be derived as

gr(y) = Gr
′(y) =

n!

(r − 1)!(n − r)!
[F (y)]r−1[1 − F (y)]n−rf(y), a < y < b (4)

In particular,
g1(y) = n[1 − F (y)]n−1f(y), a < y < b

gn(y) = n[F (y)]n−1f(y), a < y < b

(1) If Xi has a U(0,1) distribution, E(Yr) = r
n+1

.

(2) If Xj has an exponential distribution with mean 2, g1(y) = ne−ny, y > 0 and E(Y1) =
1
n
.


