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O Distributions of Functions of Random Variables

e We discuss the distributions of functions of one random variable X and the distributions
of functions of independently distributed random variables in this Chapter.

Example 1. Let X have the p.d.f. f(z) = ze™*/2, 0 <z < co. Then Y = X2 has an

exponential distribution with mean 2.

Example 2. The p.d.f. of X is f(z) = 6271, 0 < 2 < 1,
Y = —20In(X) has an exponential distribution with mean 2.

Example 3. Let X have a logistic distribution with p.d.f.
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Then Y = —+ has a U(0, 1) distribution.
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0 < # < oco. Then

Example 4. Let X; ~ b(m, p) and Xy ~ b(n, p) be independent r.v.’s, then Y = X4+ X, ~

b(m +n,p).



Sampling Distribution Theory

& The collection of n independent and identically distributed random variables X, X,

covy Xy, is called a random sample of size n from the common distribution, e.g.,
X; ~N(0,1), 1 <j<n.

& Some functions of a random sample, called statistics, are of interest, for examples, mean
and variance. Sampling distribution theory refers to the derivation of distributions
for functions of a random sample.

Theorem 1: Let X;, Xs,..., X, be nindependent r.v.’s with respective means {y;} and

variances {o?}, then Y = ", a;X; has mean py = 37", a;u; and variance o2 =

n 2 .2 ;
»,a;o;, respectively.

Theorem 2: Let X, X5,..., X, benindependent r.v.’s with respective moment-generating

functions {M;(t)}, 1 <i < n, then the moment-generating function of Y = -1 | a;X;
is My(t) = H?:l Mz(@zt)

Corollary: If X, X5, ..., X,, are observations of a random sample from a distribution
with moment-generating function M (t), then

(a) My(t) =TI, M(t), where Y =37 | X,.

(b) M=(t) =TI, M(t/n), where X = % "X

Example 1: Let X; ~ b(k,p) be a random sample of size n. Define Y = Y ; X, then
My (t) = TTizi (g + pe')* = (g + pe')*".

Example 2: Let X; ~ Gamma(1,60) be a random sample of size n. Define Y = >0 | X
then My (t) = [T/, (1 — 6t)~t = 1/(1 — 6¢t)™.

Exercises:



Random Functions Associated with
Normal Distributions

& In statistical applications, it is usually assumed that the population from which a sample
is taken is N(u, 0?).

Theorem: Let Xi, Xy,..., X, be a random sample of size n from N(y, 0?). Define X =
L3, X;, then X ~ N(u,0?/n).

Theorem: Let X; ~ x*(r;), 1 < j < n. If X1, Xs,..., X, are independent, then Y =
?:lXiNXQ(Tl—FTQ—i‘...—f-Tn).

Theorem: Let Zy,7Z,,...,7, be a random sample of size n from N(0,1), then W =
24+ Z54+...+ Z2 ~ X% (n).

Corollary: Let {X/s} be independent random variables from N (yu;, 02), respectively, then
W = 3L (Xi — wi)? /o7 is x*(n).

Theorem: Let {X ‘s} be observatlons of a random sample of size n from N(u,0?). Define
X=1%" X;and 5? = 37 (X; — X)?, then

(a) X and S? are independent.
(b) 5= = T (X = XP/0% ~ X (n = 1),

Example 1: Let X, X5, X3, X be a random sample of size 4 from the normal distribution
N(76.4,383). Then

(a) U=S",(X; — 76.4)2/383 ~ x2(4), P(0.711 < U < 7.779) = 0.90 - 0.05 =0.85.
(b) W =31 (X, — X)2/383 ~ x2(3), P(0.352 < W < 6.251) = 0.90 - 0.05 =0.85.

Theorem: Let X; ~ N(u;,02), 1 < i < n, be independent. Define Y = 37, a;X;, then
Y o~ N(Z ai, iy a707).



The Central Limit Theorem

Theorem: Let X;, X, ..., X, be a random sample of size n from N(u,o?). Define X =
Ls X, then X ~ N(u,0?/n).

n

Theorem: Let X be the mean of a random sample X, X, ..., X, of size n from a distri-
bution with mean p and variance o2. Define W,, = (X — u)/(c/+/n). Then

(a) Wn = (37, Xi —npu)/(Vno)
(b) PW, <w)=~ [* \/%—We’ZQ/de = P(w).

(c) W,, ~N(0,1) as n — oc.

Example 1: Let X, Xs,..., X,, be a random sample of size n from a x*(1). Define Y =
1 X;. Then

(@) Y ~ x*(n).
(b) (Y —n)/v2n~ N(0,1).

Example 2: Let X;, Xs,...,X,, be a random sample of size n from a U(0,1). Define
Y =>7", X, Then

(Y —0.5n)/4/n/12 ~ N(0,1).

Example 3: Let X;, Xy, ..., X, be arandom sample of size n from a Bernoulli(p). Define
Y =3",X, Then

(a) Y ~b(n,p).

(b) (Y —np)/\/np(1 —p)~ N(0,1).

Example 4: Let X, Xs,...,X,, be arandom sample of size n from an exponential distri-
bution with mean 6. Define Y = >"" | X;. Then

(a) Y ~ Gamma(n, ).
(b) (Y —nb)/vnb? ~ N(0,1).



Approximations for Discrete Distributions

& Use the normal distribution to approximate probabilities for certain discrete-type dis-
tributions.

Example 1: Let Y ~ b(10,1/2). Then

P(B<Y <6) = P(25<Y <55)
= $(0.316) — ®(—1.581) W
— 0.6240 — 0.0570
— 0.5670(0.5683 by Table IT).

Example 2: Let X, X5, ..., X, be a random sample of size n from a Poisson(A). Define
Y =3",X, Then
(Y —nA)/vVnA~ N(0,1).

Example 3: Let Y ~ Poisson(A = 20). Then

P16 <Y <21) = P(165<Y <21.5)

P[(16.5 — 20)/v/20 < (Y —20)/v/20 < (21.5 - 20)/v/20)]
= $(0.335) — ®(—0.783) = 0.4142
(2)



Limiting Moment-Generating Functions

Theorem: If a sequence of moment-generating functions approaches a certain one, say,
M(t), then the limit of the corresponding distribution must be the distribution cor-
responding to M (t).

Example 1: Let Y ~ 5(50,0.04) and let A = np = 50 x 0.04 = 2. Then
P(Y < 1) = 0.400

P(Y < 1) =~ 0.406 by a Poisson approximation.



Simulating Continuous Distributions

Theorem 5.1-2 Let X have the cumulative distribution function (c.d.f.) F(z) of the
continuous type that is strictly increasing (i.e., F(t) > F(s) if t > s) in on the
support a < x < b. Then the r.v. Y = F(X) has a uniform distribution U(0, 1).

Proof Since F(a) =0 and F(b) = 1. For 0 < y < 1, we have

P(Y<y) = P(F@)<y) = P(X<F(y)
= F(F7'(y) =y
Thus, Y has a uniform distribution U(0, 1).

e Simulating an exponential distribution f(z) = %e"”/ 2 0<2<o0.

(1) Y= F(X)=1—e X2~ U(0,1),
(2) Generate a y from U(0,1) and let y = 1 — e=%/2
(3) Then z = =2 x In(1 — y + ¢),

(4) Repeat steps (2) and (3) for the sample size you request.



Example 5.2-6: Box-Muller Transformation

Box-Muller Transformation Let {X;, X5} be a random sample from U(0,1), define
7y = v/ —2InX cos(21X5) and Zy = /—2InX sin(27X5).

or, equivalently

72472 _
X, =exp (—4222) = ¢ 9/2 and X, = Larctan (£
2 o Z )

which has the Jacobian

_Zle_Q/2 _Z2€_q/2
1

J = = ——¢92
—z2 21 27T
27 (22+23) 27 (22+23)

Since the joint p.d.f. of X; and Xy is f(z1,22) =1, 0 <2y, 29 < 1,
hence the joint p.d.f. of Z; and Z, is

9(21, 22) = |Joy 20| = smeap[— (212 + 222) /2], — 00 < 21, 20 < 0.



The Beta Distribution

Beta f(z) = Fi;‘;;?g)xa_l(l —2) L 0o<z<1, a,B€EN

Example Let X; and X5 have independent gamma distribution with parameters o, # and
B, 0, respectively. That is the joint probability density function (p.d.f.) of X; and

XQ is
1 a— _ X1 + )

f(m,m):le lx’g 1Emp<— 7 ), 0<z,20 <00, a,0€N
Consider x

Yi= ﬁ, Yo=X1 + Xo

1 2

or, equivalently,

X1 =YY, Xo=Y, -1,
The jacobian is

J = ‘ _y; 1 glyl = p2(l—y1) + 192 = o

Thus, the joint p.d.f. of ¥; and Y5 is

_ 1 a—1 B-1_—y2/6
9(y1,y2) = VT T (516577 (y152)*" (Y2 — y1y2)” €77,
where 0 < y; < 1 and 0 < y < 0.

a—1 8-1 a+p-1
yi (1 —w) /°° Y2 —y2/6
pu— d .
9(s1) T(@(8) Jo gots & 2

In particular, when 6 = 1, we have a beta distribution

g(y) = %?ﬁ_l(l —y)? 7t 0<y <1

What is E(Y;) and Var(Y1)?
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Figure 1: Beta Distributions.

Student’s t and F Distributions

Random variables whose space are intervals or a union of intervals are said to be of the
continuous types. The p.d.f. of a r.v. X of continuous type is an integrable function f(z)
satisfying

(a) f(x) >0, r€R

(b) Jg f(z)de =1
(c) The probability of the event X € A is P(A) = [, f(z)dx

Student’s t Let Z ~ N(0,1) and V ~ x*(r) be two independent random variables. Define
T =2/\/V/r. Then T has a t-distribution with p.d.f.

I'[(r+1)/2
f(t) = \/[7(?1*(2//2% (1+t2/r1)(r+1)/27 —00 <1t <00

F-distribution Let U ~ x?(r) and V ~ x*(r2) be two independent random variables.
Define W = (U/r1)/(V/r3). Then W has an F-distribution with p.d.f.

_ D[(ri4r2)/2)(r1/ra)"1/? 2(r1/2)—1
flw) = 11“(1"3/2)F(7}2/22) (Ltriw/ra) 1 +72)/2 1 0<w<oo
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Proof of the Central Limit Theorem

Theorem: Let X;, X, ..., X, be a random sample of size n from N(u,o?). Define X =
Ls X, then X ~ N(u,0?/n).

n

Theorem: Let X be the mean of a random sample X, X, ..., X, of size n from a distri-
bution with mean p and variance o2. Define W,, = (X — u)/(c/+/n). Then

(a) W = (L) Xi — np)/(v/no)
(b) PW, <w)=~ [* \/%—We’ZQ/de = P(w).
(c) W,, ~N(0,1) as n — oc.

(Proof)

Elexp(tW,)] = B {exp () (S0 X — nir)]}
= Blew[(5) (%) ++ (F) (5]}
= Blew[() ()]} e [(5) (7))}

which follows from the independence of X;, Xs, -, X,,. Then

Elexp(tW,)] = {M (ﬁ)}n, —h< ﬁ < h,

where

M(t) = E{exp[t(%)]}, —h<t<h

is the common moment-generating function of each

since E(Y;) = 0 and E(Y?) = 1, it must be that

5200 aro- (2221 -

Hence, using Taylor’s formula with a remainder, we know that there exists a number
t1 between 0 and ¢ such that

M@O)=1, M'(0)=E <

M”(tl)t2

M(t) = M(0) + M'(0)t + —y = 1+ M.

2
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Adding and subtracting t*/2, we have

Using this expression of M (t) in E[exp(tW,,)], we can represent the moment-generating
function of W,, by

Elexp(tW,)] = {1 + (L) + M) — 1] (ﬁf}n

= {14+ £+ MG <t < /b,

where now t; is between 0 and t/y/n. Since M"(t) is continuous at ¢t = 0 and ¢t; — 0
as n — 00, we have
limy oo [ M"(t1) — 1] =1—1=0

Thus,

lim, oo Elexp(tW,,)] = lim, o {1 + % + W}”

= limy—eo {1 + %}n = ¢t’/2

for all real t. We know that e**/2 is the moment-generating function of the standard
normal distribution, N (0, 1). Therefore, the limiting distribution of

_7—,11_ i X —np Y Xy —np

S o/yn o Wno Vno?

W — N(0,1) as n — oo.
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Order Statistics

O If Xy, Xy, -+, X, are observations of a random sample of size n from a continuous-type
distribution whose p.d.f.is f(z) and c.d.f. is F(x), and let the random variables

Yi<Yo<--- <Y, or Xa<Xg < - <Xp (3)
denote the order statistics of this sample, that is,

Y1 is the smallest of X1, Xo,---, X,
Y, is ther —th smallest of X1, Xo, -+, X,

Y, is thelargest of X1, Xs, -+, X,

Let f be defined in (a, b) so that F'(z) = f(z), for x € (a,b),0 < F(z) <1, z € (a,b)
and F'(a) =0, F(b) = 1. Then we have

G = Pv<) = i) ) FwF - P

(7)) POk - PO+ )

Thus the p.d.f. of Y, could be derived as

n!

g (y) = G/ (y) = (IO [F)I L =FW)]" " fly), a<y<b (4)

In particular,
aly) = nll=F@" ' fly), a<y<b

gn(y) = n[Fy)]""fly), a<y<b

(1) If X; has a U(0,1) distribution, E(Y;) = -~

n+1"

(2) If X; has an exponential distribution with mean 2, g;(y) =ne ™, y > 0 and E(Y;) =
1

n"



