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Random Variables of The Discrete Type

Definition: Given a random experiment with an outcome space S, a function X that
assigns to each element s in S one and only one real number x = X(s) is called
a random variable (r.v.). The space of X is referred to as the set of real numbers
Ω = {x : X(s) = x, s ∈ S}.

Definition: The probability mass function (p.m.f) f of a discrete r.v. X is a function that
satisfies the following properties:

(a) f(x) > 0, x ∈ Ω;

(b)
∑

x∈Ω f(x) = 1;

(c) P (Y ⊂ Ω) =
∑

x∈Y f(x);

2 Mathematical Expectation

Definition: If f is the p.m.f. of the r.v. X of the discrete type with space Ω and if the
summation

∑

x∈Ω u(x)f(x) exists, then the sum is called the mathematical expecta-
tion, or the expected value of the function u(X), which is denoted by E[u(X)], that
is,

E[u(X)] =
∑

x∈Ω u(x)f(x).

Theorem: The mathematical expectation E satisfies

(a) If c is a constant, E[c] = c.

(b) If c is a constant, and u is a function, then E[cu(X)] = cE[u(X)].

(c) If c1, c2 are constants, and u1, u2 are functions, then E[c1u1(X) + c2u2(X)] =
c1E[u1(X)] + c2E[u2(X)].
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Definition: The kth moment mk, k = 1, 2, · · · of a random variable X is defined by the
equation

mk = E(Xk), where k = 1, 2, · · ·
Then E(X) = m1, and V ar(X) = E[(X−E(X))2] = E(X2)−[E(X)]2 = m2−(m1)

2.

Example 1. The number of defects on a printed board is a r.v. X with p.m.f. given by

P (X = i) =
γ

i + 1
, for i = 0, 1, 2, 3, 4

(a) Show that the constant γ = 60
137

.

(b) Show that E(X) = 163
137

and V ar(X) = 33300
18769

.

Example 2. The number of cells (out of 100) that exhibit chromosome aberrations is a
random variable X with pmf given by

P (X = i) =
β(i + 1)2

2i+1
, for i = 0, 1, 2, 3, 4, 5

(a) Show that the constant β = 32
159

.

(b) Show that E(X) = 390
159

and V ar(X) = 57462
25281

.



3

Bernoulli, Geometric, Binomial, and
Poisson Distributions

Bernoulli Trials A r.v. X assuming only two values 0 and 1 with the probability P(X=1)=p
and P(X=0)=q=1−p is called a Bernoulli r.v. Each action is called a Bernoulli trial.

Geometric Distribution Consider a sequence of independent Bernoulli trials. A r.v. X
with the probability of the first success (X=1) at the x − th trial equals

f(x) = P(X=x) = qx−1p, x = 1, 2, . . .

Binomial Distribution Consider a sequence of n independent Bernoulli trials. A r.v. X
with the probability of exactly x successes is

f(x) = P(X=x) = C(n,x)pxqn−x, x = 0, 1, . . . , n.

Poisson Distribution A r.v. X has a Poisson distribution with parameter λ > 0 if

f(x) = P(X=x) = (e−λλx)/(x!), x = 0, 1, . . .
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Approximate Poisson Process

For the number of changes that occurs in a given continuous interval, we have an approxi-
mate Poisson process with parameter λ > 0 if

(1) The number of changes occurring in nonoverlapping intervals are independent.

(2) The probability of exactly one change in a sufficient short interval of length ∆ is
approximated by λ∆.

(3) The probability of two or more changes in a sufficient short interval is essentially
zero.

Let λ be fixed, and ∆ = 1
n

with a large n.

P (X = x) =

(

n
x

)

(λ
n
)x(1 − λ

n
)n−x

= n!
(n−x)!x!

λx

nx (1 − λ
n
)n(1 − λ

n
)−x

= n
n
· n−1

n
· · · n−x+1

n
λx

x!
(1 − λ

n
)n(1 − λ

n
)−x

= λxe−λ

x!
as n → ∞
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Moment-Generating Functions

Definition: Let X be a r.v. of the discrete type with p.m.f. f and the sample space S. if
there is an h > 0 such that

M(t) ≡ E(etX) =
∑

x∈S

etxf(x)

exists and is finite for t ∈ (−h, h), then the function M(t) is called the moment-
generating function (m.g.f.) of X.

Remark: If the m.g.f. exists, there is one and only one distribution of probability associ-
ated with that m.g.f.

Binomial Distribution: For X ∼ b(n, p), and p + q = 1,

M(t) = E(etX) =
n
∑

x=0

etx







n

x





 pxqn−x

=
n
∑

x=0







n

x





 (pet)xqn−x = (q + pet)n

E(X) = M ′(0) = np and V ar(X) = M ′′(0) − [M ′(0)]2 = np(1 − p).

Poisson Distribution: Let X have a Poisson distribution with mean λ, then

M(t) = E(etX) =
∞
∑

x=0

etx e−λλx

x!

=
∞
∑

x=0

e−λ (λet)x

x!
= e−λ · eλet

= eλ(et−1)

E(X) = M ′(0) = λ and V ar(X) = M ′′(0) − [M ′(0)]2 = λ.
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Mean, Variance, and Moment Function
of Discrete Distributions

Bernoulli f(x) = px(1 − p)1−x, x = 0, 1

M(t) = 1 − p + pet; µ = p, σ2 = p(1 − p)

Binomial f(x) = n!
x!(n−x)!

px(1 − p)n−x, x = 0, 1, 2, . . . , n

b(n, p) M(t) = (1 − p + pet)n; µ = np, σ2 = np(1 − p)

Geometric f(x) = (1 − p)x−1p, x = 1, 2, . . .

M(t) = pet

1−(1−p)et , t < −ln(1 − p)

µ = 1
p
, σ2 = 1−p

p2

Hypergeometric f(x) = C(N1,x)C(N2,n−x)
C(N,n)

, x ≤ n, x ≤ N1, n − x ≤ N2

M(t) = ×

µ = n
(

N1

N

)

, σ2 = n
(

N1

N

) (

N2

N

) (

N−n
N−1

)

Negative Binomial f(x) = C(x − 1, r − 1)pr(1 − p)x−r, x = r, r + 1, r + 2, . . .

M(t) = (pet)r

[1−(1−p)et]r
t < −ln(1 − p)

µ = r
p
, σ2 = r(1−p)

p2

Poisson f(x) = λxe−λ

x!
, x = 0, 1, 2, . . .

M(t) = eλ(et−1); µ = λ, σ2 = λ

Uniform f(x) = 1
m

, x = 1, 2, . . .

M(t) = 1
m
· et(1−emt)

1−et ; µ = m+1
2

, σ2 = m2−1
12
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Some Examples

1. Compute the probability function of the r.v. X that records the sum of the faces of two
dice.

Solution: The sample space Ω = {(i, j)| 1 ≤ i, j ≤ 6}. The random variable X is the
function X(i, j) = i+ j which takes the range R = {2, 3, · · · , 12} with the probability
function listed as

The probabilities of sum of two faces in casting two dice

X(i, j) = s 2 3 4 5 6 7
P (X = s) 1/36 2/36 3/36 4/36 5/36 6/36
X(i, j) = s 8 9 10 11 12
P (X = s) 5/36 4/36 3/36 2/36 1/36

2. It is claimed that 15% of the chickens in a particular region have patent H5N1 infection.
Suppose seven chickens are selected at random. Let X equal the number of chickens
that are infected.

(a) Assuming independence, how is X distributed? [X ∼ b(7, 0.15)].

(b) P (X = 1) =
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1





 (0.15)1(0.85)6.

(c) P (X ≥ 2) = 1 − P (0) − P (1) = 1 − (0.85)7 −
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1





 (0.15)1(0.85)6.

3. Let a r.v. X have a binomial distribution with mean 6 and variance 3.6. Find P (X = 4).

Solution: Since X ∼ b(n, p) with np = 6 and npq = 3.6, then q = 0.6, p = 0.4, and

n = 15. Thus, P (X = 4) =







15

4





 (0.4)4(0.6)11 ≈ 0.1992.
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4. Let a r.v. X have a geometric distribution. Show that

P (X > k + j|X > k) = P (X > j), where k, j ≥ 0

We sometimes say that in this situation there has been loss of momory.

Solution: Let p be the rate of success in a geometric distribution. Then P (X > j) =
∑∞

r=j+1(1 − p)r−1p = (1 − p)j, thus

P (X > k + j|X > k) =
P (X > k + j)

P (X > k)
=

(1 − p)k+j

(1 − p)k
= (1 − p)j = P (X > j).

5. Let X have a Poisson distribution with a variance of 3, then P (X = 2) = e−332

2!
≈ 0.224

and P (X = 3) = e−333

3!
≈ 0.224.

6. Flaws in a certain type of drapery material appear on the average of one in 150 square
feet. If we assume the Poisson distribution, find the probability of at most one flaw
in 225 square feet.

Solution: Since λ = 225/150 = 1.5, then P (X ≤ 1) = e−1.5(1.5)0

0!
+ e−1.5(1.5)1

1!
≈ 0.5578
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Random Variables of Continuous Types

♣ Random variables whose space are intervals or a union of intervals are said to be of the
continuous types. The p.d.f. of a r.v. X of continuous type is an integrable function
f(x) satisfying

(a) f(x) > 0, x ∈ R

(b)
∫

R f(x)dx = 1

(c) The probability of the event X ∈ A is P (A) =
∫

A f(x)dx

2 The cumulative distribution function (cdf) is defined as F (x) = P (X ≤ x) =
∫ x
−∞ f(t)dt.

2 The expectation is defined as µ = E[X] =
∫∞
−∞ xf(x)dx

2 The variance is defined as σ2 = V ar(X) =
∫∞
−∞(x − µ)2f(x)dx

2 The moment generating function is defined as M(t) = φ(t) =
∫∞
−∞ etxf(x)dx, −h < t < h

for some h > 0.

2 The (100α)th percentile is xα such that F (xα) =
∫ xα
−∞ f(x)dx = α.

♦ Example: Let X be the distance in feet between bad records on a used tape with the
p.d.f.

f(x) = 1
40

e−x/40, 0 ≤ x < ∞

Then the probability that no bad records appear within the first 40 feet is

P (X > 40) =
∫∞
40 f(x)dx = e−1 = 0.368
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Exponential, Normal, χ2, and Gamma Distributions

Uniform U(a, b) f(x) = 1
b−a

, a ≤ x ≤ b

Exponential f(x) = 1
θ
e−x/θ, 0 < x < ∞

Gamma f(x) = 1
Γ(α)θα xα−1e−x/θ, 0 < x < ∞

χ2(r) Chi-Square f(x) = 1
Γ(r/2)2r/2 x

(r/2)−1e−x/2, 0 < x < ∞

Beta Distribution f(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 < x < 1

N(µ, σ2) Normal f(x) = 1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞

Let Z ∼ N(0, 1), X ∼ χ2(n), Y ∼ χ2(m), define T = Z√
χ2(n)/n

and F = χ2(n)/n
χ2(m)/m

, then

Student-t Distribution fT (t) = Γ((n+1)/2)√
πnΓ(n/2)[1+(t2/n)](n+1)/2 , ∞ < t < ∞

F Distribution fF (w) = Γ((n+m)/2)(n/m)n/2w(n/2)−1

Γ(n/2)Γ(m/2)[1+nw/m](n+m)/2 , 0 < w < ∞
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Gamma, Exponential, χ2 Distributions

Consider an (approximate) Posisson distribution with mean (arrival rate) λ, let the r.v.
X be the waiting time until the αth arrival occurs. Then the cumulative distribution of X
can be expressed as

F (x) = P (X ≤ x) = 1 − P (X > x)
= 1 − P (fewer than α arrivals in (0, x])
= 1 −∑α−1

k=0 [e
−λx(λx)k/(k!)]

(1)

f(x) = F ′(x) =
λα

Γ(α)
xα−1e−λx, 0 < x < ∞, α > 0 (2)

Let θ = 1/λ, we have the p.d.f. of Gamma Distribution

f(x) =
1

Γ(α)θα
xα−1e−x/θ, 0 < x < ∞ (3)

For Gamma distribution, if α = 1, we have the p.d.f. of Exponential Distribution

f(x) =
1

θ
e−x/θ, 0 < x < ∞ (4)

For Gamma distribution, if θ = 2 and α = r/2, where r is a positive integer, then we
have the p.d.f. of χ2(r) distribution with r degrees of freedom.

f(x) =
1

Γ(r/2)2r/2
x(r/2)−1e−x/2, 0 < x < ∞ (5)

For Gamma Distribution,

M(t) = 1/(1 − θt)α, µ = αθ, σ2 = αθ2

For Exponential Distribution,

M(t) = 1/(1 − θt), µ = θ, σ2 = θ2

For χ2(r) Distribution,

M(t) = 1/(1 − 2t)r/2, µ = r, σ2 = 2r
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Moment-Generating Function for Exponential
Distribution

(1) Exponential distribution: f(x) = 1
θ
e−x/θ, x > 0,

∫ ∞

0
f(x)dx =

∫ ∞

0

1

θ
e−x/θdx = −e−x/θ |∞x=0= 1 (6)

φ(t) = E[etX ] =
∫∞
0 etxf(x)dx

=
∫∞
0 [etx 1

θ
e−x/θ]dx

= −1
1−θt

e−[(1/θ)−t]x|∞x=0

= 1
1−θt

for t < 1
θ

(7)

E[X] = φ′(0) =
θ

(1 − θt)2
|t=0= θ (8)

V ar(X) = φ′′(0) − [φ′(0)]2 =
2θ2

(1 − θt)3
|t=0 −θ2 = θ2 (9)
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Moment-Generating Function for N(µ, σ2) Distribution

(2) Normal distribution: X ∼ N(µ, σ2), f(x) = 1√
2πσ

e−(x−µ)2/2σ2
, −∞ < x < ∞,

(2.1) γ =
∫∞
0 e−x2

dx =
√

π
2

.

Proof:
γ2 =

(

∫∞
0 e−x2

dx
) (

∫∞
0 e−y2

dy
)

=
∫∞
0

∫∞
0 e−(x2+y2)dxdy

=
∫

π
2

0

∫∞
0 e−r2

Jr,θ(x, y)drdθ =
∫

π
2

0

∫∞
0 e−r2

rdrdθ

= π
4

(10)

(2.2) Given Γ(x) =
∫∞
0 e−ttx−1dx for x > 0, then Γ(x + 1) = xΓ(x).

(2.3) Γ(n + 1) = n! for n ≥ 0, where 0! = 1, and Γ( 1
2
) =

√
π.

(2.4) X ∼ N(µ, σ2), then φ(t) = E[etX ] = eµt+ σ2t2

2 .

Proof:
φ(t) =

∫∞
−∞[etx 1√

2πσ
e−(x−µ)2/2σ2

]dx

=
∫∞
−∞

{

etx 1√
2πσ

e[−(x−(µ+σ2t))2+(2µtσ2+σ4t2)]/2σ2
}

dx

= eµt+ σ2t2

2
∫∞
−∞[ 1√

2πσ
e−y2/2σ2

]dy

= eµt+ σ2t2

2

(11)
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Moment-Generating Function for χ2(r) Distribution

(3) Z ∼ N(0, 1) ⇒ Y = Z2 ∼ χ2(1).

Proof:

F (y) = P [Y < y] = P [−√
y < Z <

√
y] =

∫

√
y

−
√

y

1√
2π

e−z2/2dz (12)

f(y) = F ′(y) =
1

Γ(1
2
)21/2

y−1/2e−y/2, 0 < y < ∞ (13)

(3.1) Y ∼ χ2(1), then φ(t) = 1√
1−2t

.

Proof:
φ(t) =

∫∞
0 [etx 1

Γ( 1
2
)21/2 x

−1/2e−x/2]dx

= 1
Γ( 1

2
)21/2

∫∞
0 [e−( 1

2
−t)xx−1/2]dx

= 1√
1−2t

1
Γ( 1

2
)

∫∞
0 [e−yy−1/2]dy

= 1√
1−2t

(14)

(3.2) Let Yj ∼ χ2(1), 1 ≤ j ≤ r, be independent χ2 distribution with 1 degree of freedom.
Define Y =

∑r
j=1 Yj, then Y ∼ chi2(r) has χ2 distribution with r degrees of freedom

with the p.d.f. and the moment-generating function given below.

f(y) =
1

Γ(r/2)2r/2
y(r/2)−1e−y/2, 0 < y < ∞ (15)

φ(t) = 1/(1 − 2t)r/2, E[Y ] = φ′(0) = r, V ar(Y ) = φ′′(0) − [φ′(0)]2 = 2r (16)

Proof:
φY (t) = E[exp(tY )] = E[exp(

∑r
j=1 tYj)]

= Πr
j=1E[exp(tYj)] = Πr

j=1φYj
(t)

= Πr
j=1

1√
1−2t

= 1
(1−2t)r/2

(17)
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Moment-Generating Functions for Gamma
Distributions

(4) Gamma(α, θ) distribution: f(x) = 1
Γ(α)θα xα−1e−x/θ, 0 < x < ∞

(4.1) For Gamma distribution, if α = 1, we have the p.d.f. of Exponential Distribution

f(x) =
1

θ
e−x/θ, 0 < x < ∞ (18)

(4.2) For Gamma distribution, if θ = 2 and α = r/2, where r is a positive integer, then we
have the p.d.f. of χ2 distribution with r degrees of freedom, denoted as X ∼ χ2(r).

f(x) =
1

Γ(r/2)2r/2
x(r/2)−1e−x/2, 0 < x < ∞ (19)

(4.3) φ(t) = 1/(1 − θt)α, µ = αθ, σ2 = αθ2

(4.4) For Exponential distribution, φ(t) = 1/(1 − θt), µ = θ, σ2 = θ2

(4.5) For χ2(r) distribution, φ(t) = 1/(1 − 2t)r/2, µ = r, σ2 = 2r

Proof:
φ(t) =

∫∞
0

[

etx 1
Γ(α)αθ xα−1e−x/θ

]

dx

= 1
Γ(α)αθ

∫∞
0

(

e−( 1
θ
−t)xxα−1

)

dx

= 1
(1−θt)α

1
Γ(α)

∫∞
0 [e−yyα−1]dy

= 1
(1−θt)α

(20)
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Normal (Gaussian) Distributions

A normal distribution of r.v. X ∼ N(µ, σ2) has the p.d.f.

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

(21)

2 M(t) = φ(t) = eµt+ σ2t2

2

2 (X − µ)/σ ∼ N(0, 1)

2 Z ∼ N(0, 1) ⇒ Y = Z2 ∼ χ2(1)

When µ = 0, σ = 1, X ∼ N(0, 1) is said to have the standard normal distribution. The
cumulative distribution is denoted as

♦ Φ(z) =
∫ z
−∞

1√
2π

e−x2/2dx, −∞ < z < ∞

Define Γ(x) =
∫∞
0 e−ttx−1dt for x > 0 and let γ =

∫∞
0 e−x2

dx, show that

(a) γ =
∫∞
0 e−x2

dx =
√

π
2

(b) Show that Γ( 1
2
) = 2γ =

√
π

(c) Γ(x + 1) = xΓ(x), for x > 0, Γ(n) = (n − 1)! if n ∈ N .
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Exercises for N(µ, σ2), Gamma(α, θ), χ2 Distributions

1. Define Γ(x) =
∫∞
0 e−ttx−1dt for x > 0 and let γ =

∫∞
0 e−x2

dx, show that

(a) γ =
∫∞
0 e−x2

dx =
√

π
2

(b) Show that Γ( 1
2
) = 2γ =

√
π

(c) Γ(x + 1) = xΓ(x), for x > 0, Γ(n) = (n − 1)! if n ∈ N .

2. Let X ∼ N(10, 36), write down the pdf for X and compute

(a) P(X > 5).

(b) P(4 < X < 16).

(c) P(X < 8).

(d) P(X < 20).

(e) P(X > 16).

3. Let Z ∼ N(0, 1) and Y = Z2, then Y is said to have a χ2 distribution of 1 degree of
freedom, denoted as χ2(1).

(a) Show that fY (y) = 1
Γ(1/2)21/2 y−1/2e−y/2, 0 < y < ∞

(b) Show that φ(t) = 1
(1−2t)1/2 , t < 1

2

(c) If Y1, Y2, · · · , Yk ∼ χ2(1) and Y1, Y2, · · · , Yk are independent, define W =
∑k

j=1 Yj,
then W ∼ χ2(k).

(d) Show that φW (t) = 1
(1−2t)k/2 and fW (x) = 1

Γ(k/2)2k/2 x
(k/2)−1e−x/2, 0 < x < ∞

(e) Y ∼ χ2(6) is a random variable with 6 degrees of freedom, write down the pdf for
Y and compute P(Y ≤ 6) and P(3 ≤ Y ≤ 9).

4. If W is an exponential distribution with mean 6, write down the pdf for W and compute

(a) P(W < 6).

(b) P(W > 18 | W > 12).
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Joint p.d.f. and Independent Random Variables

♣ Let X and Y be two discrete r.v.’s and let R be the corresponding space of X and Y .
The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P (X = x, Y = y), has
the following properties:

(a) 0 ≤ f(x, y) ≤ 1, f(x, y) ≥ 0 for −∞ < x, y < ∞.

(b)
∑

(x,y)∈R f(x, y) = 1,
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

(c) P [(X, Y ) ∈ A] =
∑

(x,y)∈A f(x, y) (
∫ ∫

A f(x, y)), A ⊂ R.

♣ The marginal p.d.f. of X is defined as fX(x) =
∑

y f(x, y) (
∫∞
−∞ f(x, y)dy), x ∈ Rx.

♣ The marginal p.d.f. of Y is defined as fY (y) =
∑

x f(x, y) (
∫∞
−∞ f(x, y)dx), y ∈ Ry.

♣ The random variables X and Y are independent iff f(x, y) ≡ fX(x)fY (y) for x ∈ Rx,
y ∈ Ry.

Example 1. f(x, y) = (x + y)/21, x = 1, 2, 3; y = 1, 2, then X and Y are not
independent.

Example 2. f(x, y) = (xy2)/30, x = 1, 2, 3; y = 1, 2, then X and Y are independent.

♦ The collection of n independent and identically distributed random variables X1, X2,
. . ., Xn, is called a random sample of size n from the common distribution, say,
Xj ∼ N(0, 1), 1 ≤ j ≤ n.


