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Definition and Examples

Let A € R™™. If 3 v # 0 such that Av = Av, A is called an eigenvalue of matrix A,
and v is called an eigenvector corresponding to (or belonging to) the eigenvalue A. Note
that v is an eigenvector implies that av is also an eigenvector for all o # 0. We define the
Eigenspace(\) as the vector space spanned by all of the eigenvectors corresponding to the
eigenvalue A.

Ezamples:
2 0] 1] [0
1. A= ,)\1:27111: ,)\2:1,112:
| 0 1 | 0 | |1
(2 1] 1] [ —1]
2. A= ,)\1:27111: ,)\2:1,112:
| 0 1] | 0] | 1]
3 1] 1] [ —1
3. A= ,)\1:47111: s )\2:2,112:
|1 3 | 1] |1
[0 —1 ] 1 J
4. A= ,)\1:j,U1: 7)\2:_j7u2: yJ=v—1L
1 0 j 1
(3 0 ] NG 0
5 B = ,then)\1:3,u1: ,/\2——1,112—
2
[ 8 —1 ] 75 1
r L L
3 -1 V3 V2
6. C = ,then7'1:4,V1: ) 7'2:2,V2:
-1 3 =1 L
- V2 V2

Ax =X x = (M —A)x=0,x#0 = det(A\[ — A)=P(\) =0.
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Gershgorin’s Disk Theorem

Note that [[u;|ls =1 and ||v;|]|]2 = 1 for ¢ = 1,2. Denote U = [uy, up] and V' = [vy, vy,
then

3 0 40
U™'BU = . VTlov =
0 —1 0 2

Note that Vi =V~ but Ut # UL
Let A € R™", then det(\ — A) is called the characteristic polynomial of matrix A.

& Fundamental Theorem of Algebra

A real polynomial P(\) = A" + a,, 1 A\"" ' + -+ + ag of degree n has n roots {\;} such
that

n

P =A=A)A=X) (A= X,) = A" — <Z /\Z-) X ()" <]f[1 )\i>

=1

° Z?:l /\Z = Z?:l ;3 = tT(A)
o [T, N = det(A)

& Gershgorin’s Disk/Circle Theorem

Every eigenvalue of matrix A € R™*" lies in at least one of the disks

Di={z ||z — aul SZ’CLZ‘]"}, 1<i<n
J#i

Ezample: B= 10 4 1 |, A, X2, A3 € S1US2UD3, where S; ={z| |z—3] <2}, Sy =

2 2 5
{z] |2—4] <1}, S5 ={z | |2=5| < 4}. Note that A; = 6.5616, Ay = 3.0000, A3 = 2.4383.

O A matrix is said to be diagonally dominant if 32, ,; |a;;| < |agx|, V1 <@ <n.

< A diagonally dominant matrix is invertible.
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Theorem: Let A, P € R™", with P nonsingular, then A is an eigenvalue of A with
eigenvector x iff \ is an eigenvalue of P~'AP with eigenvector P~!x.

Theorem: Let A € R"*™ and let X\ be an eigenvalue of A with eigenvector x. Then
(a) a is an eigenvalue of matrix A with eigenvector x
(b) A — u is an eigenvalue of matrix A — pl with eigenvector x

(c) If A is nonsingular, then A # 0 and A~! is an eigenvalue of A~! with eigenvector x

Definition: A matrix A is similar to B, denote by A ~ B, iff there exists an invertible
matrix U such that U AU = B. Furthermore, a matrix A is orthogonally similar to
B, iff there exists an orthogonal matrix ) such that Q'AQ = B.

Theorem: Two similar matrices have the same eigenvalues, i.e., A ~ B = \(A) = \(B).
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Diagonalization of Matrices

Theorem: Suppose A € R™™ has n linearly independent eigenvectors vy, va, ..., Vv,
corresponding to eigenvalues i, Ao, ..., A,. Let V = [vq, vy, ..., v,], then

VilAV = diag[)\l, )\2, Ceey )\n]

& If A € R™*™ has n distinct eigenvalues, then their corresponding eigenvectors are linearly
independent. Thus, any matrix with distinct eigenvalues can be diagonalized.

<& Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Nondiagonalizable Matrices

210 1 00
A=10 2 1|, B= 1 20
00 2 -3 5 2
Diagonalizable Matrices
00 -2
11 2 0 0 -1
C= , D= , E=112 1|, K=
11 0 2 1 0
10 3

Spectrum Decomposition Theorem*

Every real symmetric matrix can be diagonalized.
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Similarity transformation and triangularization

Schur’s Theorem: V A € R"*" 3 an orthogonal matrix U such that U'AU = T is upper-
A. The eigenvlues must be shared by the similarity matrix 7" and appear along its
main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order
n — 1, and consider A € R™"™ with Ax = Ax and ||x||2 = 1, then 3 a Householder

matrix H; such that Hix = fe;, e.g., = —||x||2, hence
HlAH{el = HlA(Hflel) = HlA(ﬂil)() = HlﬂilAX = ﬂil)\(Hl)() = ﬂfl)\(ﬂel) = )\el
Thus,
A ] *
HAH = | ——— | ———
O | AW

Spectrum Decomposition Theorem: Every real symmetric matrix can be diagonalized
by an orthogonal matrix.

O QAQ =Aor A=QAQ" =Y, haid!

Definition: A symmetric matrix A € R™*" is nonnegative definite if xX’Ax > 0V x € R",

x #£ 0.

Definition: A symmetric matrix A € R™" is positive definite if x*Ax > 0V x € R",

x # 0.

Singular Value Decomposition Theorem: Each matrix A € R™*" can be decom-
posed as A = UX V!, where both U € R™ ™ and V € R™" are orthogonal. Moreover,
¥ € R™" = diagloy,09,...,0k0,...,0] is essentially diagonal with the singular
values satisfying oy > 09 > ... > 0 > 0.

O A=UxVt=%F  ouvt

Ezample:



A Jacobi Transform (Givens Rotation)

J(i, k; 0) =

I =1if h # 1 or h # k, where i < k

Jii = Jp = ¢ = cos 6

Jyi = —s=—sinb, J, =s=sinf

0

0
c s 0
—s c 0

0
0 -0 I

Let x,y € R", then y = J(i, k; 6)x implies that

Y; = CT; + STy,

Y = —8ST; + cTg

C = L S =
2. 2 R
\/xi+$k \/$i+xk

1
2 cos 6
X = ,
3 sin 6
_4_

|

1/V5
2/v5

], then J(2,4;0)x =

73
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Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such
that
Jredbe (o JETEAT Ty - Ty Je = A

where each J; is orthogonal, so is Q = J1Jo - - - Jx_1Jk.
Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one

of the off-diagonal matrix elements. Let A = (a;;) be symmetric, then
B = Jp,q,0)AJ(p,q,0), where
byp = carp —sayq for v #p, r#q
brq = 8ayp +cayq  for r#p, r#q
bpp = CPayy + s2ag, — 2scay,
byg = S2app + CPagq + 25cay,
bpg = (% = 8%)apg + sc(ap — agq)

To set b,, = 0, we choose c, s such that

2 2 _
a = cot(20) = < 2308 = aqua “or (1)
Pq

For computational convenience, let ¢ = 2, then t? + 2at — 1 = 0 whose smaller root (in
absolute sense) can be computed by
sgn(o 1 S
gnla) and ¢ = ct, T=

t= e , s=
va? 41+ |al V14t l+c

(2)

Remark

bpp = app — tapg
bgg = qq + tay,
brp = Arp — S(arq + Tarp)

brq = Qrq + S(Arp — Targ)



Algorithm of Jacobi Transforms to Diagonalize A

A A
for k =0,1,---, until convergence

Let |a®)] = Maz<;{|al}|}

Compute
(k)__(k)
ay = 222 solve cot(26y) = oy, for 6.
2apq
f . son(a)
Va2+1+|al
_ 1 _
¢= i S=a
_ s
T= 1+c

AR+ JEAKR) T where Ji = J(p, q, 0k)

endfor
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Convergence of Jacobi Algorithm to Diagonalize A

Proof:

Since \a](j;)\ > ]agg)] for i # j, p # q, then

a2 > of f(A® /2N, where N = =1 and

2
of f(AR)) = iy (agf)) , the sum of square off-diagonal elements of A®)

Furthermore,

Off(A(k:—i—l)) _ Off(A(k)> _9 (ag;))2 19 (&gzﬂ))Q

2
; (k+1)
, Ssthce apq =0

= of f(A®) -2 (aé’;))

< of f(AW) (1 - %) , sincelal)|? > of f(A®) /2N
Thus
(k+1) 1 s (0)
of A < (1= L) of F(AY) = 0 as k= o
Example:
420 c s 0
A=123 11, J1L,20)=| -5 ¢ 0
01 2 0 0 1
Then

4¢* — des + 382 22 +cs — 287 —s
AW = JY1,2;0)AT(1,2;0) = | 22 +cs — 257 3¢ +4des+4s° ¢

—S c 1

Note that of f(AM) =2 < 10 = of f(A©) = of f(A)
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Example for Convergence of Jacobi Algorithm

0.5000
0.2500

| 0.1250

[ 1.8363
0.0947
0.0000

| 0.4917

[ 2.0636
0.1230

0.0915

| 0.0739

[ 2.0701
0.0000

0.0969

| 0.1010

1.0000

0.5000

0.2500

0.0947

0.5000

0.1493

0.0884

0.1230

0.5000

0.0906

0.1254

0.0000

0.4627

0.0820

[ 1.0000 0.5000 0.2500

0.5000

1.0000

0.5000

0.0000

0.1493

0.6637

0.2803

0.0915

0.0906

0.4580

0.0000

0.0969

0.0820

0.4580

—0.0064 0.0217

0.1250 |
0.2500
0.5000

1.0000 |

0.4917 |
0.0884
0.2803

1.0000 |

0.0739 |
0.1254

0.0000

0.9783 |

0.1010 |

—0.0064

0.0217

1.0092

0.0000
0.5303

| 0.2652

[ 2.0636

0.1230
A(3) _
0.1176

| 0.0000

[ 2.0636
0.1018

0.0915

[ 1.5000 0.0000 0.5303 0.2652 |

0.5000

0.1768

0.0884

0.1230

0.5000

0.1493

0.0405

0.1018

0.4691

0.0880

| 0.1012 0.0000 0.0217 1.0092 |

0.1768 0.0884
1.0000 0.5000

0.5000 1.0000 |

0.1176 0.0000 ]
0.1493 0.0405
0.6637 0.2544

0.2544 0.7727

0.0915 0.1012 |
0.0830 0.0000

0.4580 0.0217

[ 2.0856  0.0000 0.0000 0.0000
0.0000 0.5394 0.0000 —0.0000
0.0000  0.0000 0.3750 0.0000

| 0.0000 —0.0000 0.0000 1.0000
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Power of A Matrix and Its Eigenvalues

Theorem: Let \j, Ay, -+, \, be eigenvalues of A € R™™. Then A& A& ... \E are eigen-
values of A¥ € R™™ with the same corresponding eigenvectors of A. That is,

Suppose that the matrix A € R™*" has n linearly independent eigenvectors vy, vy, -+, Vv,
corresponding to eigenvalues Ay, Ao, -+, \,. Then any x € R" can be written as

X =CV)+CVy+ -+ vy

Then
Afx = )\’fclvl + )\SCQVQ + e+ )\ﬁcnvn

In particular, if [A\;] > |\;| for 2 < j < n and ¢; # 0, then A"x will tend to lie in the
direction vy when k is large enough.
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Power Method for Computing the Largest Eigenvalues

Suppose that the matrix A € R"*" is diagonalizable and that U ' AU = diag(\1, Ao, - -+, An)
with U = [vi, Vo, ---, vu] and |[Ay| > [Xo| > [Xs| > --- > |\,]. Given u® € R", then

power method produces a sequence of vectors u® as follows.
fork=1,2,---
2B — Aut*-D)
r#®) = 2 = ||z, for some 1 < m < n.

u® = z(k)/r(k)
endfor

A1 must be real since the complex ergenvalues must appear in a “relatively conjugate pair”.

= ) 1= = ) 2 = — = _
1 2 Ao =1 v2 [ 1 V2 [ -l

1 1.0
Let u [ 0 ], then u [ 0.9918 ], and r 2.9756.



QR Iterations for Computing Eigenvalues

b
% Script File: shiftQR.m
% Solving Eigenvalues by shift-QR factorization
yA
Nrun=15;
fin=fopen(’dataMatrix.txt’);
fgetL(fin); % read off the header line
n=fscanf (fin,’%d’,1);
A=fscanf (fin,’%f’,[n nl);
A=A’
SavelA=A;
for k=1:Nrun,
s=A(n,n);
A=A-s*eye(n);
(Q Rl=qr(A);
A=RxQ+s*eye(n) ;
end
eig(SaveA)
yA
% dataMatrix.txt
b

Matrices for computing eigenvalues by (R factorization or shift-QR

5
0 0.5 0.256 0.125 0.0625
5 1.0 0.5 0.256 0.125
.26 0.5 1.0 0.5 0.25
.126 0.25 0.5 1.0 0.5
.0625 0.125 0.256 0.5 1.0

for shift-QR studies
.9766 0.3945 0.4198 1.1159
.3945 2.7328 -0.3097 0.1129
.4198 -0.3097 2.5675 0.6079
.1159 0.1129 0.6097 1.7231

P O ON P OO O O+
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Norms of Vectors and Matrices

Definition: A vector norm on R" is a function
T R — R"'={zx>0|z€R}
that satisfies
(1) 7(x) >0 Vx#0, 7(0) =0
(2) 7(ex) =|cr(x) Vce R, x€ R"

(3) Tx+y)<7(x)+7(y) Vx,y € R

Hélder norm (p-norm) ||x||, = (X, |z |))" for p> 1.

(p=1) ||x|l1 =X, |z;| (Mahattan or City-block distance)

(pP=2) [|x|= (L, \:I:Z-\Q)l/Q (Euclidean distance)

(P=00) ||x||oc = maz1<i<n{|z:|} (00-norm)
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Definition: A matrix norm on R™*"™ is a function
T R™" — R ={z>0|z€ R}
that satisfies
(1) 7(4A) >0 YA#0, 7(0)=0
(2) 7(cA) =|c|r(A)V ce R, Ae R™"

(3) 7(A+ B) < 7(A) +7(B) ¥ A, B e R™"

Consistency Property: T(AB) < 17(A)7(B) V A, B

(a) 7(A) = maz{lay| [ 1<i<m, 1<j<n}

(b) [[Allr = { DY aQ}l/Q (Frobenius norm)

j=1 03
Subordinate Matrix Norm: ||A| = maz|x0{|Ax||/||x]}

(1) If Ae R™™, then [|A|ly = mazi<j<n (X1 |ag])

(2) If A€ R™", then [|A]le = mazi<icm (S |ai;])

(3) Let A € R™" be real symmetric, then ||Alls = maxi<;<n|\;|, where A\; € A(A)
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Theorem: Let x € R" and let A = (a;;) € R™™. Define ||A||; = Supju|,=1{]|Aull:}

Proof: For |jul|; =1,

1Al = Sup{llAulli} = D13 aijusl <33 asgllug| =D Jus| 3 lajl
j=1li=1

i=1 j=1 j=1 i=1

Then . N N
Al < Mazi<j<n{)_ lail} D lujl = Mazi<j<n{)_ |ai;|}
i=1 j=1 i=1

On the other hand, let >, |ai| = Mazi<j<n{> 1= |a;;|} and choose u = e, which
completes the proof.

Theorem: Let A = [a;;] € R™*", and define ||A|| = Maz |y =1{||Aule}.

Show that ||A|lc = Mazi<i<m {Z\&ij\}

J=1

Proof: Let Y |ak;| = Mazi<i<m {Z|aij|}> for any x € R™ with ||x[|oc = 1, we have

j=1 J=1
|Ax]|oe = Maxi<i<m {l 21 az‘j%‘|}
< Mazi<icm {Z;’Zl lai;| - |$]|} < Mazri<i<m {E?:l |aij|||XHoo}

< Mazi<i<m {2?21 |aij|} = 271 |ax;]

In particular, if we pick up y € R" such that y; = sign(ag;), V1 < j < n, then
[¥lloo = 1, and [|Ay|loo = 3j—; |ax;|, which completes the proof.
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Theorem: Let A = [a;;] € R"*", and define ||A||, = Max|x|,=1{]|Ax]||2}. Show that

| Al = \/p(AtA) = \/maa:imum eigenvalue of AtA (spectral radius)

(Proof) Let Ay, A2, ---, A, be eigenvalues and their corresponding unit eigenvectors
u;, up, ---, u, of matrix A'A, that is,

(AtA)ui = )‘iui and ||11Z||2 =1Vl S 1 S n.

Since uy, up, ---, u, must be an orthonormal basis based on spectrum decomposition
n

theorem, for any x € R", we have x = Zciui. Then
i=1

1Al = Mazjc,=1{[|Axl2}

=/ Maz,—1{]|Ax|3}

=/ Maz,— {x' A'Ax}

= \IM(LJ}|X|2:1’Z )\iC?‘

=1

= Mazig{IN]}
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A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside
Taiwan move out in each year. Let y; and z, be the population at the end of the k — th
year, outside Taiwan and inside Taiwan, respectively. Then we have

Yk _09 0.2 Yr—1
= = /\1:]_.07 /\2:07
2k _01 0.8 Zk—1
n 09 027 v f2 1yt o 1 177w
2 01 08 [ 2] 3|1 —1]lo ©n][1 —2]]=

O A Markov matrix A is nonnegative with each colume adding to 1.
(a) A; =1 is an eigenvalue with a nonnegative eigenvector x;.

(b) The other eigenvalues satisfy |A;| < 1.

(c) If any power of A has all positive entries, and the other |\;| < 1. Then A*u,
approaches the steady state of u,, which is a multiple of x; as long as the projection

of ug in x; is not zero.

<& Check Perron-Frobenius theorem in Strang’s book.
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e and Differential Equations

*eA:]-F%_}_I;‘_!Q_}_..._}_A_m_}_...

m!

& L= _Nu = ut)=eMu0)

-2 1

& L— _Au = u = u(t) = e *“u(0)

& A = UAU" for an orthogonal matrix U, then

e = UrU=Udiag[e, e, ... et U

& Solve 2" — 32" + 22’ = 0.

7 t

Let y = 2/, z =y = 2", and let u = [z,y, z]". The problem is reduced to solving

0O 1 0
u = Au = 0 0 1 |u
0 -2 3

Then

1 et 0 0 0 —2.2913 2.2913

Sl-

0 ¢ 0|0 34641 —1.7321 |u(0)

s
—
~
~—
|
Cbﬁ-
b
o
P
(e
=
|
SN
= = [t
Sl-
o

al-

0 0 0 1 1 —1.5000 0.5000
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Problems Solved by Matlab

Let A, B, H, x, y, u, b be matrices and vectors defined below, and H = I —2uu’

2 11 -3 1 0 %3 6 1
A: 4 6 0 ,B: 1 _3 O , U= 1/2 7b: 2 , X = 1 y Y =
-2 7 2 0 0 3 1/ =5 1

10

. Let A=LU=QR, find L, U; Q, R.
. Find determinants and inverses of matrices A, B, and H.

. Solve Ax = b, how to find the number of floating-point operations are required?

Find the ranks of matrices A, B, and H.

. Find the characteristic polynomials of matrices A and B.

. Find 1-norm, 2-norm, and co-norm of matrices A, B, and H.

Find the eigenvalues/eigenvectors of matrices A and B.

. Find matrices U and V such that U7'AU and V1BV are diagonal matrices.

. Find the singular values and singular vectors of matrices A and B.

. Randomly generate a 4x4 matrix C with 0 < C'(4,7) < 9.



