

Test 2 for ISA5305, Spring 2017

15:30-17:20, Monday, May 22, 2017

Name : _____ *ID :* _____

(10%) 1(a) Let X be a continuous type of random variable that takes only nonnegative values. For any $\beta > 0$, prove that

$$P(X \geq \beta) \leq \frac{E(X)}{\beta}$$

(10%) 1(b) Let X be a continuous type of random variable with mean $E(X) = \mu$ and variance $Var(X) = \sigma^2$. For any $\tau > 0$, show that

$$P(|X - \mu| \geq \tau) \leq \frac{\sigma^2}{\tau^2}$$

(5%) 1(c) Find the number of nonnegative integer solutions for

$$x_1 + x_2 + \cdots + x_k = n, \text{ where } n \geq k.$$

(5%) 1(d) Find the number of positive integer solutions for

$$x_1 + x_2 + \cdots + x_k = n, \text{ where } n \geq k.$$

(30%) 2. Fill the following blanks (no partial credits).

(a) Let $\{X_i, 1 \leq i \leq 9\}$ be a random sample of size 9 from $N(2, 1)$. Define $\bar{X} = \frac{1}{9} \sum_{i=1}^9 X_i$ and $Y = \sum_{i=1}^9 (X_i - 2)^2$. Then

the moment-generating function $M_{\bar{X}}(t) = \underline{\hspace{10cm}}$

the moment-generating function $M_Y(t) = \underline{\hspace{10cm}}$

(b) Let $\{Z_i \sim N(0, 1), 1 \leq i \leq 10\}$ be a random sample of size 10. Define $V = \sum_{i=1}^{10} Z_i$ and $W = \sum_{i=1}^{10} Z_i^2$. Then

the probability density function of $V, f_V(x) = \underline{\hspace{10cm}}$

the moment-generating function $M_W(t) = \underline{\hspace{10cm}}$ and the p.d.f. of $W, f_W(x) = \underline{\hspace{10cm}}$

(c) Let $\{X_1, X_2, \dots, X_n\}$ be a random sample of size n from the *exponential distribution* with $E(X_n) = 3$. Define $Y = \sum_{i=1}^n X_i$. Then

the p.d.f. of $Y, f_Y(y) = \underline{\hspace{10cm}}$

the moment-generating function of $Y, \phi_Y(t) = \underline{\hspace{10cm}}$

(d) Let $Z \sim N(0, 1)$. Define $Y = 3Z + 2$, then

the p.d.f. of $Y, f_Y(y) = \underline{\hspace{10cm}}$

the moment-generating function of $Y, \phi_Y(t) = \underline{\hspace{10cm}}$

(e) Let $\{X_i \sim \chi^2(1), 1 \leq i \leq n\}$ be a random sample and define $W_n = (\sum_{i=1}^n X_i - n)/\sqrt{2n}$. According to the Central Limit Theorem,

the limiting distribution function of $W_n \lim_{n \rightarrow \infty} P(W_n \leq w) = \underline{\hspace{10cm}}$

the limiting moment-generating function is $\lim_{n \rightarrow \infty} M_{W_n}(t) = \underline{\hspace{10cm}}$

(10%) 3. Let the r.v. X have the p.d.f. $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, $0 < x < 1$, where $\alpha, \beta > 0$ are known positive integers.

Find $E[X]$ and $Var[X]$.

Hint: $\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt$ and $\int_0^1 x^{\alpha-1}(1-x)^{\beta-1}dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

(15%) 4. Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics of a random sample $\{X_1, X_2, \dots, X_n\}$ from the uniform distribution $U(0, 1)$.

- (a) Find the probability density function of $X_{(1)}$.
- (b) Use the results of (a) to find $E[X_{(1)}]$.
- (c) Find the probability density function of $X_{(n)}$.
- (d) Use the result of (c) to find $E[X_{(n)}]$.

(15%) 5. Let X have the p.d.f. $f(x) = \beta x^{\beta-1}$, $0 < x < 1$ for a given $\beta > 0$. Define $Y = -3\beta \ln(X)$.

- (a) Compute the distribution function of Y , $P(Y \leq y)$, for $0 < y < \infty$.
- (b) Find the moment-generating function $M_Y(t)$.
- (c) Find $E(Y)$ and $Var(Y)$.