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ABSTRACT 

While the internet applications are widely used, the amount of data information has a 

rapid growth. Data Science or Big data analysis has become a popular issue nowadays. 

Data visualization provides intuitive methods to reveal some important properties of 

high-dimensional data, for example, clustering tendency. 

This paper studies three linear dimensionality reduction methods to project 

high-dimensional data into lower-dimensional subspace: Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) are linear mappings for the 

usage of projection. Independent Component Analysis (ICA) is originally proposed to 

solve the blind source separation problem. Like a linear mapping, ICA also computes 

a mapping matrix for data projection. Unlike PCA and LDA, ICA could extract the 

independent sources in a mixture of non-Gaussian distributions. 

We review the background of PCA, LDA, and ICA by algorithmic approaches and 

illustrate the 2D projection associated with a K-means clustering result on three data 

sets: IRIS, 8OX, and Thyroid data. Experimental results help us reveal the structure of 

high-dimensional data in some sense. 
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1. Introduction 

The Moore’s law is an observation which indicates over the history of computing 

hardware, the number of transistors in a dense integrated circuit doubles 

approximately every two years [1]. Although this trend has continued for more than 

half a century, its doubts about the ability of projection to remain valid into the 

indefinite future have been expressed. On the other hand, the huge data need to be 

processed and analyzed by software have an exponential growth, for example, 

medical study, customer behaviors and many other fields. The size of database could 

easily grow from current terabytes to petabytes, exabytes, zettabytes, or even 

yottabytes in the near future. The term of Big data is mentioned to describe this 

phenomenon. How to effectively illustrate and process Big data is an emerging issue. 
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Big data analysis costs plenty of resources in data processing even if the time and 

space complexity of the algorithms is low. We are interested in the way to represent 

the features of observed data in a low-dimensional space for visualization. The 

extracted features should narrate the characteristics of a dataset precisely and make 

the dataset readable [2]. This work studies dimensionality reduction from 

high-dimensional data to lower-dimensional space for visualization. 

According to Friedman [3], the main goal of data visualization is to communicate 

information clearly and effectively through graphical means. There are two major 

advantages in data visualization: (1) Make the observation clustering characteristics 

display in a more intuitive way. (2) Data visualization converts abstract 

high-dimensional data into visual diagrams which makes the evaluation of data 

feasible and transmits the result of analysis handily. 

Because of being the most capable with human visual ability, data visualization 

generally displays in 2-D or 3-D pictures. It means that when we deal with 

high-dimensional data, we should process dimensionality reduction on dataset before 

data visualization through feature selection or extraction. We study three linear 

methods: Principal Component Analysis (PCA) [4], Linear Discriminant Analysis 

(LDA) [5], and Independent Component Analysis (ICA) [6]. Figure 1 illustrates that a 

linear transform from high-dimensional data into a 2 or 3 dimensional space, we can 

easily display the aspect of an original dataset in a 2D or 3D diagrams [7]. 

 

Figure 1. A Diagram of Data Reduction for Visualization. 

 

PCA was introduced by K. Pearson in early 20th century [8]. It linearly transforms 

data into a lower-dimensional subspace by obtaining the maximized variance of the 

data in a low-dimensional representation. LDA was first proposed by R.A. Fisher in 

1936 which uses class label to compute the between-class scatter matrix and 

within-class scatter matrix. The criterion defined by these two matrices will give a 

good separation among different classes [9]. ICA was first proposed by P. Comon [6]. 

ICA divides a mixed signal into additive subcomponents of non-Gaussian signals that 

are statistically independent from each other [10]. This paper adopts an algorithmic 

approach to design and implement PCA, LDA, and ICA for dimensionality reduction  
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on three data sets: IRIS, 8OX, and Thyroid [11]. 

 

The remaining of this paper is organized as follows. Section 2 gives a background 

review of PCA, LDA, and ICA. Section 3 describes the data sets and illustrates the 

experimental results. Section 4 draws the conclusion. 

 

2. Background Review for PCA, LDA, and ICA 

2.1 Principal Component Analysis (PCA) 

PCA is a dimensionality reduction method which is like fitting an n-dimensional 

ellipsoid to the data, where each axis of the ellipsoid represents a principal component. 

If some axis of the ellipse is short, the variance along that axis is also small. By 

ignoring that axis and its corresponding fewer principal components from the 

representation of the dataset, we only lose a little amount of information. 

In practice, PCA is an orthogonal linear transform, which converts an original data 

into a new coordinate system such that the largest variance of the projected data 

comes to lie along the first axis, the second largest variance lies on the second axis, 

and so on. We define these coordinates as the principal components [12]. 

Considering n observations in a dataset, each observation is m-dimensional by 

ignoring the class label. Let ݔiሬሬሬԦ ∈ Թ, i ൌ 1, 2, … , n. We depict the steps of computing 

principal components as follows. 

(a) Compute the m-dimensional mean vector ߤԦ by 

Ԧߤ  ൌ ଵ


∑ iሬሬሬԦݔ

ୀଵ   (1) 

(b) Compute the estimated covariance matrix C for the observed data by 

C ൌ 	 ଵ

∑ ሺݔiሬሬሬԦ െ iሬሬሬԦݔԦሻሺߤ െ Ԧሻ௧ߤ
ୀଵ  (2) 

(c) Compute n eigenvalues and corresponding eigenvectors of C,ሺλ, ,పሬሬሬԦሻݒ 1 

݅  n, where ߣଵ  ଶߣ  ⋯  ߣ  0. 

(d) Compute the first d principal components by 

ݕ
ሺሻ ൌ iሬሬሬԦݔ

௧ݑjሬሬሬԦ (3) 

for each observation ݔԦ, 1  ݅  ݊, along the direction ݑjሬሬሬԦ, ݆ ൌ 1, 2,⋯ , ݀. 

Because the estimated covariance matrix C is nonnegative definite, so all of its 

eigenvalues must be real and nonnegative. In general, a few larger eigenvalues 

dominate the others in most of the practical data sets, that is,  

ρ ൌ
ఒభାఒమା⋯ାఒೖ

ఒభାఒమା⋯ାఒೖା⋯ାఒ
 1	ݎ݂	85%  ݇ ≪ ݉ (4) 

where ρ is sometimes called the percentage retained in data representation. 
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2.2 Linear Discriminant Analysis (LDA) 

LDA is another dimensionality reduction method such that feature clusters are most 

separable after the transformation. It requires the class label of each observation [13]. 

Consider a set of observations {ݔԦ} with K classes, the linear discriminant analysis 

(LDA) or Fisher discriminant analysis (FDA) can be depicted as follows. Suppose an 

observation may come from the ith class of K classes with each class containing	݊ 

observations, the within-class scatter matrix ܵ௪ can be written as 

ܵ௪ ൌ ∑ ∑ ሺݔറ െ റݔiሬሬሬԦሻሺߤ െ iሬሬሬԦሻ௧௫Ԧ∈ఠߤ

ୀଵ  (5) 

The between-class scatter matrix ܵ can be defined by the sample covariance of the 

class means 

ܵ ൌ ∑ ሺߤపሬሬሬԦ െ పሬሬሬԦߤԦሻሺߤ െ Ԧሻ௧ߤ
ୀଵ  (6) 

where ߤԦ		is the mean vector of all observations. The class separation in a direction ݓሬሬԦ 

in this case will be given by 

ߩ ൌ ௪ሬሬԦௌ್௪ሬሬԦ

௪ሬሬԦௌೢ௪ሬሬԦ
 (7) 

Seeking a vector ݓሬሬԦ to maximize ߩ in Eq. (7) is equivalent to solving a generalized 

eigenvalue/eigenvector system given as follows 

ܵݓሬሬԦ ൌ λܵ௪ݓሬሬԦ                                                                                                (8) 

 

2.3 Independent Component Analysis (ICA) 

ICA is essentially a multivariate, parallel version of projection pursuit method which 

is like PCA [15]. Whereas projection pursuit extracts a series of signals one at a time 

from a set of M signal mixtures, ICA extracts M signals in parallel. This property 

makes ICA a more robust method than PCA [16]. ICA attempts to decompose a 

multivariate signal into independent non-Gaussian signals [17]. ICA separation of a 

mixed signal gives good results if the following two assumptions are satisfied. 

(i) The source signals are independent of each other. 

(ii) The values in each source signal have non-Gaussian distributions. 

 

We chose FastICA [19] as ICA practical method or called an approach of 

Maximization of non-Gaussianity. FastICA is widely used in many applications. 

Before the FastICA algorithm could be applied, the input vector data wሬሬሬԦ should be 

centered and whitened. First, input the data by subtracting the mean vector of μሬԦ for 

the sample ሼwሬሬሬԦሽ. 

vሬԦ ൌ wሬሬሬԦ െ μሬԦ (9) 

vሬԦ is the centered vector of wሬሬሬԦ and μሬԦ is the sample mean vector. The next step is 

whitening the data by  
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ሬሬሬሬሬԦݓ ൌ భିܦܷ
మܷ௧ݒԦ (10) 

where U is the orthogonal matrix of eigenvectors and D is the diagonal matrix of 

eigenvalues, so that 

E൛ݓሬሬሬሬሬԦݓሬሬሬሬሬԦ
௧ൟ ൌ I (11) 

After the preprocessing, the FastICA algorithm could extract multiple independent 

components. We follow the definition of FastICA by Hyvärinen [19] to give two 

functions ݂ and ݃ as follows. 

(a) 	݂ሺݑሻ ൌ logሺcoshሺݑሻሻ ; 	݂′ሺݑሻ ൌ tanhሺݑሻ ;		݂ᇱᇱሺݑሻ ൌ 1 െ tanhଶሺݑሻ 

(b) ݃ሺݑሻ ൌ െ݁ି௨
మ ଶ⁄ ; 	݃′ሺݑሻ ൌ ௨ି݁ݑ

మ ଶ⁄ ;		݃ᇱᇱሺݑሻ ൌ ሺ1 െ ଶሻ݁ି௨ݑ
మ ଶ⁄          (12) 

݂ሺݑሻ  and ݃ሺݑሻ  are non-quadratic functions,  which  obtain approximations of 

negentropy that give a very good compromise between the properties of the two 

classical non-Gaussianity measures given by kurtosis and negentropy.  

 

Consider an observation matrix X ∈ Թൈ , where X contains n columns of 

m-dimensional observed vector {wሬሬሬԦ i, i=1,2,…,n}. Given a number of desired 

components K, K<m. An ICA algorithm can be stated as follows. 

 

Input: X ∈ Թൈ: n m-dim sample vectors, and K: no. of independent components. 

Output: W ∈ Թൈ: a projection matrix to extract K independent components. 

Output: S ∈ Թൈ: each column represents a vector of K independent components. 

 for	i ൌ 1, 2,⋯ , K 

iሬሬሬԦݓ   ←  ݉	݄ݐ݈݃݊݁	݂	ݎݐܿ݁ݒ	݉݀݊ܽݎ

  while	ݓiሬሬሬԦ	changes, do	ሼ 

iሬሬሬԦݓ ←
1
݊
ܺ݃ᇱ൫ݓiሬሬሬԦ

௧ܺ൯
ݐ
െ
1
݊
݃ᇱᇱ൫ݓiሬሬሬԦ

௧ܺ൯ݓiሬሬሬԦ 

iሬሬሬԦݓ ← iሬሬሬԦݓ െ൫ݓనሬሬሬԦ
௧ݓሬሬሬԦ൯ݓሬሬሬԦ

ିଵ

ୀଵ

 

      iሬሬሬԦݓ ൌ
௪iሬሬሬሬԦ

‖௪iሬሬሬሬԦ‖మ
 

    ሽ 

endfor 

Output: W ൌ

ۏ
ێ
ێ
ێ
ଵሬሬሬሬԦݓۍ

௧

ଶሬሬሬሬሬԦݓ
௧

⋮
ሬሬሬሬሬԦݓ

௧ے
ۑ
ۑ
ۑ
ې

∈ Թൈ,  S=WX. 

Note: For visualization, K= 2 or 3 is used. 
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3. Experiments 

We apply the PCA, LDA and ICA on IRIS, 8OX and Thyroid data [11] to demonstrate 

2D projection for visualization by Matlab codes [21]. 

 

3.1 Dimensionality Reduction on IRIS Data 

IRIS dataset is commonly used for a study of pattern classification, which was 

originally used in Fisher’s experiment [5]. It consists of 3 IRIS flowers: Setosa, 

Versicolor, and Virginica, each class contains 50 samples of four features which are 

the measurements of the sepal length, sepal width, petal length, and petal width. 

Figure 2 illustrates the results of PCA, LDA, and ICA applied on IRIS data. 

  Setosa  Versicolor  Virginica

Setosa  50  0  0 

Versicolor  0  48  2 

Virginica  0  14  36 
 

(a) (b) 

(c) (d) 

Figure 2. Results of (a) K-means, (b) PCA, (c) LDA, (d) ICA on IRIS Data. 

 

3.2 Dimensionality Reduction on 8OX Data 

The 8OX data set is derived from Munson’s hand printed Fortran character set. 

Included are 15 patterns from each of the characters ‘8’, ‘O’, ‘X’ consisting of 8 

measurements which are the distances between edge and the character from eight 
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directions: east, northeast, north, northwest, west, southwest, south, and southeast. 

Figure 3 illustrates the results of PCA, LDA, and ICA applied on 8OX data. 

  8  O  X 

8  2  13  0 

O  0  15  0 

X  5  0  10 
 

 

(a) (b) 

  

(c) (d) 

Figure 3. Results of (a) K-means, (b) PCA, (c) LDA, (d) ICA on 8OX Data. 

 

3.3 Dimensionality Reduction on Thyroid Data 

The Thyroid data set is one of the several databases about thyroid available at the UCI 

repository. The data set recorded 215 patients of 3 categories: (1) normal, (2) suffers 

from hyperthyroidism, or (3) hypothyroidism. Each sample contains five features: 

T3resin, Thyroxin, Triiodothyronine, Thyroidstimulating, and TSH. 

Figure 4 illustrates the results of PCA, LDA, and ICA applied on Thyroid data. 
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  Normal Suffer  Hyperthyroidism

Normal  136  5  9 

Suffer  9  18  3 

Hyperthyroidism  7  4  24 
 

(a) (b) 

(c) (d) 

Figure 4. Results of (a) K-means, (b) PCA, (c) LDA, (d) ICA on Thyroid Data. 

 

 

3.4 Discussion 

Experiments show that LDA has better visualization performance than PCA and ICA 

because it utilizes the label information. There is a random factor in ICA algorithm, it 

means that if we choose different ݓሬሬԦ  vectors for calculation of independent 

components, the performance of ICA may obtain slightly different results. 

 

4. Conclusion and Discussion 

Data Science or Big data analysis [22] has become more important along with the 

rapid growth of the Internet of Things (IoT) [23]. Visualization by data dimensionality 

reduction help people further reveal the structure of high-dimensional Big data. This 

work reviews three projection methods: PCA, LDA, and ICA by algorithmic 

approaches with experiments illustrated on three datasets: IRIS, 8OX, and Thyroid.  

All of PCA, LDA, and ICA have a significant advantage in computing time when the 

data dimension is relatively low compared to the sample size, while ICA takes larger 
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time complexity. 3D visualization by these three methods can be easily extended with 

a little more computation time. We compute the W projection matrix to project the 

original data into a lower-dimensional subspace. For a huge sample size of Big data, a 

sampling technique could be adopted in a preprocessing stage. 

LDA uses label information, but PCA and ICA do not. If the label information is not 

available, one can first use a clustering method such as K-means algorithm to find the 

label of each pattern vector before applying LDA. 

One application of visualization by dimensionality reduction on Big data is to guide 

future feature acquisition for improving pattern recognition and saving storage space 

for speeding up data transmission via the wire/wireless transmission. 
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