Homework 3: Fundamentals and Discrete Distributions

- (1) It is believed that 20% of Americans do not have any health insurance. Let X equal the number with no health insurance in a random sample of n = 15 Americans.
 - (a) How is X distributed?
 - (b) Find the mean and variance of X.
 - (c) $P(X \ge 2)$.
- (2) Consider a random experiment of casting a pair of unbiased six-sided dice and let the r.v. X equal the *smaller* of the outcomes if they are different and the common value if they are equal.
 - (a) Find the p.d.f. of r.v. X.
 - (b) Draw a probability histogram.
 - (c) Find the expectation and variance of r.v. X.
- (3) In a lottery, a 3-digit integer is selected at random from 000 to 999, inclusive. Let X be the integer selected on a particular day.
 - (a) Find the pmf (pdf) of the r.v. X.
 - (b) Find the mean of the r.v. X.
 - (c) Find variance of the r.v. X.
- (4) Let the r.v. X have a Poisson discribution with the p.d.f. $f(x) = \lambda^x e^{-\lambda}/x!$, $x = 0, 1, 2, ..., \infty$, where $\lambda > 0$ is a known parameter.
 - (a) Find the mean, E(X).
 - (b) Find the variance, Var(X).
 - (c) Find the mode of the probability density function f.
- (5) Consider a binomial distribution $X \sim b(n, p)$, draw the bar chart for each density function described below.

- (a) Plot the density function $X \sim b(10, 0.6)$.
- (b) Plot the density function $X \sim b(9, 0.6)$.
- (c) What are the modes of (a) and (b), respectively?
- (6) Let $Y \sim Poisson(\lambda)$ be a Poisson distribution with mean λ .
 - (a) Plot the density function $Y \sim Poisson(4)$.
 - (b) Plot the density function $Y \sim Poisson(7)$.
 - (c) What are the modes of (a) and (b), respectively?