Test 1: Linear Algebra for ISA5305

Name: ID: Index:

(22 pts) 1. Mark ○ if the statement is true, and mark × otherwise, or give your comments.

() (a) Not every underdetermined linear system has a solution.

() (b) Not every nonsingular matrix has an LU-decomposition.

() (c) If λ is an eigenvalue of matrix A, then λ^m must be an eigenvalue of A^m.

() (d) L : R^m → R^n is a linear transform, then Ker(L) is a vector subspace of R^m.

() (e) Let X, Y be 1-dimensional vector subspaces of R^2 and X ⊥ Y, then R^2 = X ⊕ Y.

() (f) The product of eigenvalues of A equals the product of diagonal elements of A.

() (g) All eigenvalues of a real symmetric matrix must be distinct.

() (h) Every nonsingular square matrix can be diagonalized.

() (i) Let A, B ∈ R^{n×n} be symmetric, then (A + B)(A - B) = A^2 - B^2.

() (j) Similar matrices always have the same eigenvalues.

() (k) Let x ∈ R^n with ∥x∥_2 = 5. If A ∈ R^{n×n} is orthogonal, then ∥Ax∥_2 = 25.
(28 pts) 2. Answering each of the following questions.

(a) Let $u, v, w \in \mathbb{R}^n$ be orthonormal vectors, then $\|u - 2v + 2w\|_2 = ?$

(b) Let $H_1, H_2, \cdots, H_k \in \mathbb{R}^{n \times n}$ be Householder matrices. Then $\det(\prod_{j=1}^{k} H_j) = ?$

(c) Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $1, 3, 5, \cdots, 2n - 1$. What is the trace of A?

(d) Let $A \in \mathbb{R}^{3 \times 3}$ have $\lambda(A) = \{1, 2, 5\}$. What is $\lambda(A^{-1})$?

(e) Let $V = \text{Span}(e_1, e_3) \subseteq \mathbb{R}^n$, what is $\dim(V^\perp)$?

(f) Let $x = [2, 0, -2]^t$, $y = [0, 2, -2]^t$, then the angle between x and y, what is $\angle(x, y)$?

(g) Let $A \in 3 \times 3$ have eigenvalues $3, 4, 6$ what are the eigenvalues of $(A - 2I)^{-1}$?
(20 pts) 3. Let \(A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \).

(a) Find the eigenvalues \(\lambda_1 \) and \(\lambda_2 \) of matrix \(A \) and their corresponding unit eigenvectors \(u_1 \) and \(u_2 \).

(b) Find the trace of \(A \) and the determinant of \(A \).

(c) Let \(U = [u_1, u_2] \), compute \(U^tAU \).

(d) Find the eigenvalues \(\mu_1 \) and \(\mu_2 \) of matrix \(A^{-1} \).

(e) Find the trace of \(A^{-1} \) and the determinant of \(A^{-1} \).
(20 pts) 4. Let \(A = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \), then \(A^2 = \begin{bmatrix} 5 & -4 & 0 \\ -4 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix} \), and define

\[\alpha = \min_{\|x\|_2 = 1} \{ x^t A^5 x \}, \quad \beta = \max_{\|y\|_2 = 1} \{ y^t A^5 y \}. \]

(a) Find the eigenvalues \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) of matrix \(A \) and their corresponding unit eigenvectors \(u_1, u_2, \) and \(u_3. \)

(b) Find the eigenvalues \(\mu_1, \mu_2, \) and \(\mu_3 \) of matrix \(A^2 \) and their corresponding unit eigenvectors \(v_1, v_2, \) and \(v_3. \)

(c) Find the eigenvalues \(\tau_1, \tau_2, \) and \(\tau_3 \) of matrix \(A^5 \) and their corresponding unit eigenvectors \(w_1, w_2, \) and \(w_3. \)

(d) Compute the values of \(\alpha \) and \(\beta. \)
Let $b = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Give a single Matlab command to solve each of the following questions for $a \sim j$.

(a) Randomly generate a 3 by 3 matrix A whose elements are integers in $[0, 10)$.
(b) Input vector b.
(c) Solve the linear system $Ax = b$ for x.
(d) Input matrix C given above.
(e) Compute the characteristic polynomial for C.
(f) Compute the eigenvalues and eigenvectors of C.
(g) Compute the trace of matrix C.
(h) Compute the rank of matrix C.
(i) Compute the LU – decomposition of the matrix C.
(j) Compute the QR – factorization of the matrix C.