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Bayes Rule and its Applications

Bayes Rule: P (Bk|A) = P (A|Bk)P (Bk)/
∑n

i=1 P (A|Bi)P (Bi)

Example 1: In a certain factory, machines A, B, and C are all producing springs of the
same length. Of their production, machines A, B, and C produce 2%, 1%, and 3%
defective springs, respectively. Of the total production of springs in the factory,
machine A produces 35%, machine B produces 25%, and machine C produces 40%.
Then we have

P (D|A) = 0.02, P (A) = 0.35;

P (D|B) = 0.01, P (B) = 0.25;

P (D|C) = 0.03, P (C) = 0.40.

If one spring is selected at random from the total springs produced in a day, the
probability that it is defective equals

P (D) =
∑

X∈{A,B,C} P (D|X)P (X) = 215/10000

If the selected spring is defective, the conditional probability that it was produced
by machine A, B, or C can be calculated by

P (A|D) = P (D|A)P (A)/P (D) = 70/215

P (B|D) = P (D|B)P (B)/P (D) = 25/215

P (C|D) = P (D|C)P (C)/P (D) = 120/215



2

Foundation for Normal Distributions

• Γ(α) =
∫ ∞
0 e−ttα−1dt, for α > 0

• Γ(α + 1) = αΓ(α)

• Γ(1) = 1

• Γ(n + 1) = n! ∀ integer n ≥ 0 where 0! ≡ 1.

• ∫ ∞
0 e−x2

dx =
√

π
2

• Γ(1
2
) =
√

π

• X ∼ N(µ, σ2) means that fX(x) = 1√
2πσ2

e−(x−µ)2/2σ2

, −∞ < x <∞
• Sampling X ∼ N(µ, σ2) by Matlab

• Y = random(′Normal′, µ, σ, SampleSize, 1)

♠ ♥ ♦ ♣ ♠ ♥ ♦ ♣ ♠ ♥ ♦ ♣
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Expectation and Covariance Matrix

Let X1, X2, · · · , Xn be random variables such that the expectation, variance, and
covariance are defined as follows.

µj = E[Xj], σ2
j = V ar(Xj) = E[(Xj − µj)

2] (1)

ρijσiσj = Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] (2)

Suppose X = [X1, X2, · · · , Xn]t be a random vector, then the expectation and
covariance matrix of X is defined as

E[X] = [µ1, µ2, · · · , µn]t = µ (3)

Cov(X) = [E[(Xi − µi)(Xj − µj)]] (4)
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Bayes Decision Theory

(1) p(ωi): a priori probability

(2) p(x|ωi): class conditional density function

(3) p(ωi|x): a posteriori probability

(4) α(x): an action (a decision)

(5) λ(α(x)|ωj): the loss function

p(error) =
∑

x
p(error|x)p(x) =

∑

x
p(α(x) ∈ ωi, x ∈ ωj, i 6= j)p(x)

R(α(x)|x) =
∑C

j=1 λ(α(x)|ωj)p(ωj|x): conditional risk for pattern x

∑

x
R(α(x)|x)p(x): average error of probability (error rate)

• Bayes Decision Rule

For each x, find α(x) which minimizes R(α(x)|x)

For the 0-1 loss function, i.e. λ(α(x)|ωj) =

{

0 if α(x) = ωj,
1 otherwise

Then the Bayes decision rule can be reduced to

min [R(α(x)|x)] = minj [1− p(ωj|x)] = maxi p(ωi|x)

or

Assign x to class ωi if p(ωi|x) > p(ωj|x) for j 6= i
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Example 2: X|ωi ∼ N(µi, σ
2
i )

p(x|ωi) =
1√
2πσi

exp[−(x− µi)
2/2σ2

i ]

The Bayes decision rule is to assign x to class ωi if

p(ωi|x) > p(ωj|x) for j 6= i

iff
p(x|ωi)p(ωi) > p(x|ωj)p(ωj)

iff
1

2
ln[σ2

j /σ
2
i ] +

1

2σ2
j

(x− µj)
2 − 1

2σ2
i

(x− µi)
2 > ln[p(ωj)/p(ωi)]

In particular,

(a) if σi = σ for each i, then the Bayes rule is to assign x to class ωi if

(µi − µj)x−
1

2
(µ2

i − µ2
j) > σ2ln[p(ωj)/p(ωi)]

(b) if σi = σ and p(ωi) = 1/C for each i, then the Bayes rule is to assign x to class ωi if

(µi − µj)[x−
1

2
(µi + µj)] > 0
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Example 3: X|ωi ∼ N(µi, Ci)

p(x|ωi) =
1

(2π)d/2|Ci|1/2
exp[−(x − µi)

tC−1
i (x− µi)/2]

The Bayes decision rule is to assign x to class ωi if

p(ωi|x) > p(ωj|x) for j 6= i

iff

1

2

[

ln(|Cj|/|Ci|) +
(

xtC−1
j x− 2xtC−1

j µj + µt
jC

−1
j µj

)

−
(

xtC−1
i x− 2xtC−1

i µi + µt
iC

−1
i µi

)]

> ln[p(ωj)/p(ωi)]

In particular,

(a) if Ci = C for each i, then the Bayes decision rule is to assign x to class ωi if

(µi − µj)
tC−1x− 1

2
[µt

iC
−1µi − µt

jC
−1µj] > ln[p(ωj)/p(ωi)]

(b) if Ci = σ2I for each i, then the Bayes decision rule is to assign x to class ωi if

(µi − µj)
tx− 1

2
(‖µi‖2 − ‖µj‖2) > σ2ln[p(ωj)/p(ωi)]
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Example 4: X|ωi ∼ N(µi, C), i = 1, 2

Let Λ(x) = ln[p(x|ω1)/p(x|ω2)] = [x− 1
2
(µ1 + µ2)]

tC−1(µ1 − µ2),

and let r = ln[p(ω2)/p(ω1)].

The Bayes decision rule is to assign x to class ω1 if Λ(x) > r.

Note that

x ∈ ω1 ⇒ Λ(X) ∼ N(
∆

2
, ∆)

x ∈ ω2 ⇒ Λ(X) ∼ N(
−∆

2
, ∆)

where ∆ = (µ1 − µ2)
tC−1(µ1 − µ2) is called the square Mahalanobis distance.

Hint: Prove that
∫

Λ(x)p(x|ω1)dx = ∆
2

and
∫

[Λ(x)− ∆
2
]2p(x|ω1)dx = ∆

Then the Bayes error rate can be computed by

E∗ = p[x ∈ ω2, Λ(x) > r] + p[x ∈ ω1, Λ(x) < r]

= p(ω2)
∫∞
r

1√
2π∆

exp[−(y + ∆
2
)2/2∆]dy + p(ω1)

∫ r
−∞

1√
2π∆

exp[−(y − ∆
2
)2/2∆]dy
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Proof of Λ(X)|ω1 ∼ N(∆
2
, ∆)

X is a multivariate normal distribution so is its linear mapping Λ(X).

E[Λ(X)|ω1] =
∫

Λ(x)p(x|ω1)dx

=
∫ {[x− 1

2
(µ1 + µ2)]

tC−1(µ1 − µ2)}p(x|ω1)dx

=
∫

xtC−1(µ1 − µ2)p(x|ω1)dx − 1
2

∫

(µ1 + µ2)
tC−1(µ1 − µ2)p(x|ω1)dx

=
∫

[xtp(x|ω1)dx]C−1(µ1 − µ2) − 1
2
[(µ1 + µ2)

tC−1(µ1 − µ2)]
∫

p(x|ω1)dx

= µt
1C

−1(µ1 − µ2) − 1
2
(µ1 + µ2)

tC−1(µ1 − µ2)

= 1
2
(µ1 − µ2)

tC−1(µ1 − µ2) = ∆
2

V ar[Λ(X)|ω1] =
∫

[Λ(x)− ∆
2
]2p(x|ω1)dx

=
∫

[(x− µ1)
tC−1(µ1 − µ2)]

2p(x|ω1)dx

= (µ1 − µ2)
tC−1{∫ [(x− µ1)(x− µ1)]

tp(x|ω1)dx}C−1(µ1 − µ2)

= (µ1 − µ2)
tC−1CC−1(µ1 − µ2)

= (µ1 − µ2)
tC−1(µ1 − µ2) = ∆
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In Example 4, let

µ1 =

[

1
1

]

, µ2 =

[

−1
−1

]

, C = I2, and let p(ω1) = p(ω2) = 1/2

Then

Λ(x) = (x− 0)tI−1

[

2
2

]

= 2(x1 + x2)

r = ln [p(ω2)/p(ω1)] = 0

∆ = (µ1 − µ2)
tI−1(µ1 − µ2) = 8

The Bayes decision rule is to assign x to ω1 if 2x1 + 2x2 > 0

The Bayes error rate is p(error) = Φ(−
√

∆
2

) = Φ(−
√

8
2

) = Φ(−
√

2)
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Example 5: Bayes decision theory in a discrete case

Consider a two-class problem and assume that each component xj of the pattern x is
either 0 or 1 with the conditional probabilities

pj = p(xj = 1|ω1) and qj = p(xj = 1|ω2) (5)

Suppose that the components of x are conditionally independent. Then

p(x|ω1) =
d

∏

j=1

p
xj

j (1− pj)
1−xj , p(x|ω2) =

d
∏

j=1

q
xj

j (1− qj)
1−xj (6)

Let the log-likelihood ratio Λ(x) = ln[p(x|ω1)/p(x|ω2)], and r = ln[p(ω2)/p(ω1)], then

Λ(x) =
d

∑

j=1

xjln[pj(1− qj)/qj(1− pj)] +
d

∑

j=1

ln[(1− pj)/(1− qj)] (7)

The Bayes decision rule is to assign x to ω1 if Λ(x) > r.

The decision boundary is
∑d

j=1 wjxj + w0 = 0, where

wj = ln[pj(1− qj)/qj(1− pj)], 1 ≤ j ≤ d,

w0 =
∑d

j=1 ln[(1− pj)/(1− qj)] + ln[p(ω1)/p(ω2)]

In particular, if p(ω1) = p(ω2) = 1/2, pj = p, qj = q = 1 − p for 1 ≤ j ≤ d, d is odd
and p > q, then the Bayes error rate is

E∗ =
(d−1)/2

∑

k=0

d!

(d− k)!k!
pk(1− p)d−k (8)
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3 X|ω1 ∼ N(3, 22) and X|ω2 ∼ N(6, 12)

p(x|ωi) =
1√
2πσi

exp[−(x − µi)
2/2σ2

i ], i = 1, 2

The Maximum Likelihood (ML) decision is to assign x to ω1 if p(x|ω1) > p(x|ω2)

The Bayes decision is to assign x to ω1 if p(x|ω1)p(ω1) > p(x|ω2)p(ω2)

Note that ML is the special case by assuming p(ω1) = p(ω2) = 1
2

which need not be true
in practical applications. We shall show the effect of p(ω1) = 2

3
, p(ω2) = 1

3
.

ML Decision: y ∈ ω1 if y < 7−
√

4 + (8ln2)/3 or y > 7 +
√

4 + (8ln2)/3

Bayes Decision: y ∈ ω1 if y < 5 or y > 9

The error probability can be computed by

Err = p(ω1)
∫ b
a

1√
2π2

exp[−(x− 3)2/(2 · 22)]dx

+ p(ω2){
∫ a
−∞

1√
2π

exp[−(x− 6)2/2]dx

+
∫ ∞
b

1√
2π

exp[−(x− 6)2/2]dx}

where a=4.5817, b=9.4183 for ML decision, and a=5, b=9 for Bayes decision, then

♣ ErrML = 0.1650 and ErrBayes = 0.1532.
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3 X|ω1 ∼ Rayleigh(12) and X|ω2 ∼ Rayleigh(32)

p(x|ωi) =
x

σ2
i

exp(− x2

2σ2
i

), i = 1, 2

The Maximum Likelihood (ML) decision is to assign x to ω1 if p(x|ω1) > p(x|ω2)

The Bayes decision is to assign x to ω1 if p(x|ω1)p(ω1) > p(x|ω2)p(ω2)

Note that ML is the special case by assuming p(ω1) = p(ω2) = 1
2

which need not be true
in practical applications. We shall show the effect of p(ω1) = 3

4
, p(ω2) = 1

4
with σ1 < σ2.

ML Decision: y ∈ ω1 if 0 ≤ y <

√

2σ2
1
σ2
2

σ2
2
−σ2

1

× ln(
σ2
2

σ2
1

)

Bayes Decision: y ∈ ω1 if 0 ≤ y <

√

2σ2
1
σ2
2

σ2
2
−σ2

1

× [ln(
σ2
2

σ2
1

) + ln(p(ω1)
p(ω2)

)]

The error probability can be computed by

Err = p(ω1)
∫ ∞
t

x
σ2
1

exp(− x2

2σ2
1

)dx

+ p(ω2)
∫ t
0

x
σ2
2

exp(− x2

2σ2
2

)dx

= p(ω1) · exp(− t2

2σ2
1

) + p(ω2) · [1− exp(− t2

2σ2
2

)]

where t=2.2235 for ML decision, and t=2.7232 for Bayes decision, then

♣ ErrML = 0.1234 and ErrBayes = 0.1028.
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3 X|ω1 ∼ χ2(r1) and X|ω2 ∼ χ2(r2)

p(x|ωi) =
1

Γ(ri/2)2ri/2
x(ri/2)−1e−x/2, x > 0, i = 1, 2

The Maximum Likelihood (ML) decision is to assign x to ω1 if p(x|ω1) > p(x|ω2)

The Bayes decision is to assign x to ω1 if p(x|ω1)p(ω1) > p(x|ω2)p(ω2)

Note that ML is the special case by assuming p(ω1) = p(ω2) = 1
2

which need not be true
in practical applications. We shall show the effect of p(ω1) = 1

7
, p(ω2) = 6

7
with r1 < r2.

ML Decision:

y ∈ ω1 if
Γ(r2/2)

Γ(r1/2)
2(r2−r1)/2 > x(r2−r1)/2

Bayes Decision:

y ∈ ω1 if
Γ(r2/2)

Γ(r1/2)
2(r2−r1)/2 p(ω1)

p(ω2)
> x(r2−r1)/2

The error probability can be computed by

Err = p(ω1)
∫ ∞
t

1
Γ(r1/2)2r1/2 x

(r1/2)−1e−x/2dx

+p(ω2)
∫ t
0

1
Γ(r2/2)2r2/2 x

(r2/2)−1e−x/2dx

When r1 = 4, r2 = 8, p(ω1) = 1/7, p(ω2) = 6/7, we have
t=4.899 for ML decision, and t=2.0 for Bayes decision, and

♣ ErrML = 0.2411 and ErrBayes = 0.1214.
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3 X|ω1 ∼ N(µ1, σ
2
1) and X|ω2 ∼ N(µ2, σ

2
2)

p(x|ωi) =
1√
2πσi

exp[−(x − µi)
2/2σ2

i ], i = 1, 2

The Maximum Likelihood (ML) decision is to assign x to ω1 if p(x|ω1) > p(x|ω2)

The Bayes decision is to assign x to ω1 if p(x|ω1)p(ω1) > p(x|ω2)p(ω2)

Note that ML is the special case by assuming p(ω1) = p(ω2) = 1
2

which need not be true
in practical applications.

The error probability can be computed by

Err = p(ω1)
∫ ∞
T

1√
2πσ1

exp[−(x− µ1)
2/(2σ2

1)]dx

+ p(ω2)
∫ T
0

1√
2πσ2

exp[−(x− µ2)
2/(2σ2

2)]dx

2 As soon as T is chosen, Parameters p(ωi), µi, σ
2
i , i = 1, 2 could be estimated, so is Err.

• Otsu (1979) and Fisher (1936) chose T to maximize the following criterion, respectively

σ2
B = p(ω1)p(ω2)(µ1 − µ2)

2

Fisher = (µ1−µ2)2

σ2
1
+σ2

2
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A Simple Thresholding Algorithm
By Otsu, IEEE Trans. on SMC, 62-66, 1979

(1) pi ← ni

n
, where n =

∑G−1
i=0 ni

(2) uT =
∑G−1

k=0 kpk

(3) Do for k = 0, G− 1

ω(k) ← ∑k
i=0 pi

u(k) ← ∑k
i=0 ipi

σ2
B(k) ← [uT ω(k)−u(k)]2

ω(k)[1−ω(k)]

(4) Select k∗ such that σ2
B(k) is maximized

Note that

• ω0 = ω(k), u0 =
∑k

i=0 iP (i|C0) = u(k)/ω(k)

• ω1 = 1− ω(k), u1 =
∑G−1

i=k+1 iP (i|C1) = [uT − u(k)]/[1− ω(k)]

• σ2
ω = ω0σ

2
0 + ω1σ

2
1

• σ2
B = ω0(u0 − uT )2 + ω1(u1 − uT )2

• σ2
T =

∑G−1
i=0 (i− uT )2pi

♣ σ2
ω + σ2

B = σ2
T

♣ ε =
σ2

B

σ2
T
, κ =

σ2
T

σ2
ω
, λ =

σ2
B

σ2
ω



16

Gamma Function and the Volumes of High
Dimensional Spheres

1. Define Γ(x) =
∫ ∞
0 e−ttx−1dt for x > 0 and let γ =

∫ ∞
0 e−x2

dx. Then

(a) Γ(x) =
∫ ∞
0 e−x2

dx =
√

π
2

(b) Show that Γ( 1
2
) = 2γ =

√
π

(c) Γ(x + 1) = xΓ(x), for x > 0, Γ(n) = (n− 1)! if n ∈ N .

(d) The volume of a d− dimensional unit sphere is πd/2/Γ(d
2

+ 1).

0 5 10 15
0

1

2

3

4

5

6
The volume of a d−dim unite sphere is πd/2/Γ((d/2)+1)

Figure 1: The Volume of a High Dimensional Sphere.

V(1)=2; V(2)=pi; V(3)=4*pi/3;

V(4)=pi*pi/2; V(5)=8*pi*pi/15; V(6)=pi*pi*pi/6;

V(7)=16*pi*pi*pi/105; V(8)=(pi)^4/24; V(9)=32*(pi)^4/945;

V(10)=(pi)^5/120; V(11)=64*(pi)^5/10395; V(12)=(pi)^6/720;

V(13)=128*(pi)^6/135135; V(14)=(pi)^7/5040; V(15)=256*(pi)^7/2027025;

D=1:15;

plot(D,V,’b-v’)

title(’The volume of a d-dim unit sphere is \pi^{d/2}/\Gamma((d/2)+1)’)
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The Derivation of Volumn for an n-Dimensional
Sphere

2 For n = 2,

x1 = r cos θ, 0 ≤ θ ≤ 2π

x2 = r sin θ, 0 ≤ r ≤ R
, J2 =

∂(x1, x2)

∂(r, θ)
=

∣

∣

∣

∣

∣

∣

∣

∂x1

∂r
∂x2

∂r

∂x1

∂θ
∂x2

∂θ

∣

∣

∣

∣

∣

∣

∣

= r

The volumn is computed by

V2 =
∫ R

0

∫ 2π

0
J2drdθ =

∫ R

0

∫ 2π

0
rdrdθ = πR2

2 For n = 3,

x1 = r cos θ1 cos θ2, 0 ≤ θ2 ≤ 2π

x2 = r cos θ1 sin θ2, −π
2
≤ θ1 ≤ π

2

x3 = r sin θ1, 0 ≤ r ≤ R

, J3 =
∂(x1, x2, x3)

∂(r, θ1, θ2)
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂r
∂x2

∂r
∂x3

∂r

∂x1

∂θ1

∂x2

∂θ1

∂x3

∂θ1

∂x1

∂θ2

∂x2

∂θ2

∂x3

∂θ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r2 cos θ1

The volumn is computed by

V3 =
∫ R

0

∫ π/2

−π/2

∫ 2π

0
J3drdθ1dθ2 =

∫ R

0

∫ π/2

−π/2

∫ 2π

0
r2 cos θ1drdθ1dθ2 =

4πR3

3
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2 For n ≥ 4,

x1 = r cos θ1 cos θ2 · · · · · · cos θn−2 cos θn−1, 0 ≤ θn−1 ≤ 2π

x2 = r cos θ1 cos θ2 · · · · · · cos θn−2 sin θn−1, −π
2
≤ θn−2 ≤ π

2

x3 = r cos θ1 cos θ2 · · · cos θn−3 sin θn−2, −π
2
≤ θn−3 ≤ π

2

...
...

xj = r cos θ1 cos θ2 · · · cos θn−j sin θn−j+1, −π
2
≤ θn−j ≤ π

2

...
...

xn−1 = r cos θ1 sin θ2, −π
2
≤ θ1 ≤ π

2

xn = r sin θ1, 0 ≤ r ≤ R

Note that
n

∑

i=1

x2
i = r2 and denote ci = cos θi, si = sin θi for 1 ≤ i ≤ n − 1. Then the

Jacobian Jn = ∂(x1,x2,···,xn)
∂(r,θ1,···,θn−1)

is computed as

Jn = rn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1c2 · · · cn−2cn−1 c1c2 · · · cn−2sn−1 c1c2 · · · cn−3sn−2 · · · s1

−s1c2 · · · cn−2cn−1 −s1c2 · · · cn−2sn−1 −s1c2 · · · cn−3sn−2 · · · c1

−c1s2 · · · cn−2cn−1 −c1s2 · · · cn−2sn−1 −c1s2 · · · cn−3sn−2 · · · 0

...
...

...
...

...

−c1c2 · · · sn−2cn−1 −c1c2 · · · sn−2sn−1 c1c2 · · · cn−3cn−2 · · · 0

−c1c2 · · · cn−2sn−1 c1c2 · · · cn−2cn−1 0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Then

Jn = rn−1cn−1
1 cn−2

2 · · · c1
n−1s1s2 · · · sn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1 1

−t1 −t1 −t1 · · · 1
t1

−t2 −t2 −t2 · · · 0

...
...

...
...

...

tn−2 −tn−2
1

tn−2
· · · 0

−tn−1
1

tn−1
0 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, where ti =
sinθi

cos θi

Subtracting each column from the preceding one and do further simplifications, we obtain

Jn = rn−1cn−1
1 cn−2

2 · · · c1
n−1s1s2 · · · sn−1Π

n−1
j=1 (tj +

1

tj
)

= rn−1cn−1
1 cn−2

2 · · · c1
n−1s1s2 · · · sn−1Π

n−1
j=1 (

1

sj · cj

)

= rn−1cn−2
1 cn−3

2 · · · c2
n−3c

1
n−2

= rn−1 cosn−2 θ1 cosn−3 θ2 · · · cos2 θn−3 cos1 θn−2
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Therefore, the volumn of an n-dimensional sphere can be calculated by

Vn =
∫ R

0

∫ 2π

0

∫ π/2

−π/2
· · ·

∫ π/2

−π/2

∫ π/2

−π/2
(Jn)dθ1dθ2 · · ·dθn−2dθn−1dr

=
∫ R

0

∫ 2π

0

∫ π/2

−π/2
· · ·

∫ π/2

−π/2

∫ π/2

−π/2
[rn−1 cosn−2 θ1 cosn−3 θ2 · · · cos θn−2]dθ1dθ2 · · ·dθn−2dθn−1dr

= πn/2

Γ( n
2
+1)
·Rn

Note that the above computations exploit the properties of the following Gamma and

Beta functions, and trignometry.

Γ(α) =
∫ ∞

0
e−ttα−1dt for α > 0

Beta(α, β) =
∫ 1

0
xα−1(1− x)β−1dx, where α, β > 0

Beta(α, β) = Γ(α)·Γ(β)
Γ(α+β)

• Relationship Between Gamma and Beta Functions

Γ(x)Γ(y) =
∫ ∞

0
e−uux−1du

∫ ∞

0
e−vvy−1dv

=
∫ ∞

0

∫ ∞

0
e−u−vux−1vy−1dudv

=
∫ ∞

z=0

∫ 1

t=0
e−z(zt)x−1[z(1− t)]y−1zdtdz by putting u = zt, v = z(1− t)

=
∫ ∞

z=0
e−zzx+y−1dz

∫ 1

t=0
tx−1(1− t)y−1dt

= Γ(x + y)Beta(x, y)

Γ(α) = (α− 1)Γ(α− 1) for α > 1

Γ(1) = 1, Γ(1
2
) =
√

π
∫ 2π

0
dθn−1 = 2π,

∫ π/2

−π/2
cos θn−2dθn−2 = 2,

∫ π/2

−π/2
cos2 θn−3dθn−3 =

π

2
,

∫ π/2

−π/2
cosm θdθ =

∫ π/2

0
2 cosm θdθ, 3 ≤ α ≤ n− 2
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Now

∫ π/2

0
2 cosm θdθ =

∫ 0

1
2xm 1

−
√

1− x2
dx by letting x = cos θ

=
∫ 1

0
2xm(1− x2)−1/2dx =

∫ 1

0
2ym/2(1− y)−1/2 1

2
√

y
dy, where x =

√
y

=
∫ 1

0
y

m
2
− 1

2 (1− y)−1/2dy =
∫ 1

0
2y

m+1

2
−1(1− y)

1

2
−1dy

= Beta(m+1
2

, 1
2
) =

Γ( m+1

2
)Γ( 1

2
)

Γ( m
2

+1)

Therefore,

Vn =
∫ R

0

∫ 2π

0

∫ π/2

−π/2
· · ·

∫ π/2

−π/2

∫ π/2

−π/2
[rn−1 cosn−2 θ1 cosn−3 θ2 · · · cos θn−2]dθ1dθ2 · · ·dθn−2dθn−1dr

= Rn

n
· (2π) · (2) · (π

2
) · Πn−2

m=3Beta(
m + 1

2
,

1

2
) =

πn/2

Γ(n
2

+ 1)
·Rn


