Bayes Rule and its Applications

Bayes Rule: P(Bj|A) = P(A|B)P(B;)/ X, P(A|B;)P(B))

Example 1: In a certain factory, machines A, B, and C are all producing springs of the
same length. Of their production, machines A, B, and C produce 2%, 1%, and 3%
defective springs, respectively. Of the total production of springs in the factory,
machine A produces 35%, machine B produces 25%, and machine C produces 40%.
Then we have

P(D|A) = 0.02, P(A) = 0.35;
P(D|B) = 0.01, P(B) = 0.25;
P(D|C) = 0.03, P(C) = 0.40.

If one spring is selected at random from the total springs produced in a day, the
probability that it is defective equals

P(D) = Y xeqan.cy P(D|X)P(X) = 215/10000

If the selected spring is defective, the conditional probability that it was produced
by machine A, B, or C can be calculated by

P(A|D) = P(D|A)P(A)/P(D) = 70/215
P(B|D) = P(D|B)P(B)/P(D) = 25/215
P(C|D) = P(D|C)P(C)/P(D) = 120/215



Foundation for Normal Distributions

D(a) = [gCe it dt, for a>0
(a+1)=al(a)
(=1

I'(n+1) =n! Vinteger n > 0 where 0! = 1.
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X ~ N(u,0?) means that fx(z) = \/1—6_(96_”)2/202, — 00 < <00
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Sampling X ~ N(u,0?) by Matlab

Y = random('Normal', u, o, SampleSize, 1)
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Expectation and Covariance Matrix

Let X;, X5, ---, X, be random variables such that the expectation, variance, and
covariance are defined as follows.

pi = EXj], of = Var(X;) = E[(X; — 15)%] (1)
pijoioy = Cou(X;, X;) = E[(X; — pi)(X; — )] (2)
Suppose X = [X;, X5, -+, X,]" be a random vector, then the expectation and

covariance matrix of X is defined as

EX] = [, po, -5 ] = p (3)
Cov(X) = [Bl(Xi — i) (X — )] (4)



Bayes Decision Theory

(1) p(w;): a priori probability
(2) p(x|w;): class conditional density function
(3) p(w;|x): a posteriori probability

(4) a(x): an action (a decision)

(
(5) AMa(x)|w;): the loss function

plerror) = Y plerror|x)p(x) = Y pla(x) € w;, x €w;, i # j)p(x)
R(a(x)|x) = Z]C:I AMa(x)|w;)p(w;j|x): conditional risk for pattern x

>« R(a(x)|x)p(x): average error of probability (error rate)

e Bayes Decision Rule
For each x, find a(x) which minimizes R(«(x)|x)

0 if a(x) =wj,
1

For the 0-1 loss function, i.e. A(a(x)|w;) = { otherwise

Then the Bayes decision rule can be reduced to
min [R(a(x)x)] = min,[1 - p(w;|x)] = maz; pwix)
or

Assign x to class w; if p(wi|x) > p(w;|x) for j #1i



Example 2: X|w; ~ N(u;,0?)

plals) = ——eap|~(z = p)? 20"

The Bayes decision rule is to assign x to class w; if

plwilz) > plwslz) for j # i

if
p(x|w)p(wi) > p(z|w;)p(w;)
iff 1 1 1
QZH[U?/%Q] + 27?@ — ;) — 2722(55 —pi)® > Infp(w;)/p(w;)]

In particular,

(a) if o; = o for each 4, then the Bayes rule is to assign x to class w; if

1

=(uf —113) > o’lnfp(w;)/p(w;)]

(i — py)z = 9

(b) if 0; = 0 and p(w;) = 1/C for each i, then the Bayes rule is to assign x to class w; if

(1= 1)l = s+ 1)) > 0



Example 3: X|w; ~ N(u;,C;)

1

p(xlwi) = WGW[—(X — 1) O (x — i) /2]

The Bayes decision rule is to assign x to class w; if

p(wilr) > plwjlz) for j #i
iff

J

N —

> In[p(w;)/p(wi)]
In particular,

a) if C; = C for each i, then the Bayes decision rule is to assign x to class w; if
Y g
_ 1 _ _
(i =)' O = Sl C e =50 ] > nlp(w;) /p(wi)]
(b) if C; = oI for each i, then the Bayes decision rule is to assign x to class w; if

(s = p5)'x = (sl = sl) > 0%Imlpley)p(es)]

[ln(\C’j|/\C’i|) + (xth_lx —2x'C p; + /f.C’j_luj) — (xtC’i_lx —2x'C7 s + ,uEC’Z._l,ui)}



Example 4: X|w; ~ N(u;,C), i=1,2

Let A(x) = In[p(x|wn)/p(x|ws)] = [x = 5 (11 + p2)]"C™" (111 = pr2),
and let r = In[p(ws)/p(w1)].

The Bayes decision rule is to assign x to class wy if A(x) > 7.

Note that A
XEw = A(X)NN(E,A)

—A
X Ewy = AX)~N(—,A)

2

where A = (1 — p2)*C~ (g — p2) is called the square Mahalanobis distance.
Hint: Prove that [ A(x)p(x|wi)dx = £ and [[A(x) — $]*p(x|wi)dx = A

Then the Bayes error rate can be computed by

E* = p[x € wy, A(X) > 7]+ p[x € wy, A(X) < 7]

= plws) [ goexeap[—(y + 3)*/2Aldy + p(wr) [7 o oz eap[—(y — )°/2A]dy



Proof of A(X)|w; ~ N(£,A)
X is a multivariate normal distribution so is its linear mapping A(X).
EAX)|wi] = [AX)p(x|wi)dx
= J{lx—3(m + p)]'C~ (11 — p2) pp(x|wr )dx
= [xX'C7(m — po)p(x|wr)dx — 3 [(pn + p2)'C™ (i1 — po)p(x|wr)dx
= Jx'p(xjw)dx|C™ (11 = p2) = 3[(k1 + p2)'C (pa — paa)] [ p(x|wr)dx

= piC M — p2) — (4 p2)' CH (p — pro)

vo[>

= (=)' C (1 — o) =

VarlA(X)|wr] = JIA(x) = 3]*p(x|wi)dx
= Jx— 1) C7 (11 — p2)Pp(xfewr)dx
= (1 — p2) CH{J[(x = 1) (x — pu)]'p(x|wr)dx}C ™ (p1 — pra)
= (1 = p2)'C7ICC™ (1 — pi2)

= (= p2)'C7 (1 — p2) = A



In Example 4, let

1 —1
[ = [ . ]’ Ly = [ ] ], C =1, and let p(wy) = p(we) = 1/2

Then

AX) = (x — 0)]! l :

] = 2(z1 + 22)
r = In[p(wz)/p(w1)] =0

A= (p1 = p2) I (1 — p2) =8

The Bayes decision rule is to assign x to wy if 221 + 229 > 0

The Bayes error rate is p(error) = @(—VTZ) = (ID(—\/Tg) = ®(—/2)
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Example 5: Bayes decision theory in a discrete case

Consider a two-class problem and assume that each component x; of the pattern x is
either 0 or 1 with the conditional probabilities

b= p(xj = 1|Wl) and q; = P(xj = 1|W2) (5)

Suppose that the components of x are conditionally independent. Then

d
p(x|w) = H )L p(x|ws) = H (1 —gy)'™ (6)

Let the log-likelihood ratio A(x) = In[p(x|w1)/p(x|ws)], and r = In[p(w2)/p(w1)], then

= Z:len[pj(l —q)/q;(1=py)] + > In[(1 —p;)/(1 = g;)] (7)

j=1
The Bayes decision rule is to assign x to wy if A(x) > r.

The decision boundary is Z?zl w;x; + wy = 0, where
=lInlp;(1 —q;)/q;(1 —py)], 1 <j <d,

wo = 35y In[(1 = py)/(1 = ;)] + In[p(wr) /p(w2)]

In particular, if p(wy) = p(ws) =1/2, p; =p, ¢ =q=1—pfor 1 < j <d, dis odd
and p > ¢, then the Bayes error rate is

(d-1)/2 d! i i
B = 1;) mp (1-p) (8)
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O X|wy ~ N(3,2?) and X|wy ~ N(6,1?)

1
expl—(z — w;)*/207], i=1,2

p(lwi) = o

The Maximum Likelihood (ML) decision is to assign x to wy if p(x|wy) > p(x|ws)
The Bayes decision is to assign x to wy if p(z|lwi)p(wi) > p(r|w:)p(ws)

Note that ML is the special case by assuming p(w;) = p(ws) = 3 which need not be true

in practical applications. We shall show the effect of p(w:) = 3, p(ws) = %

ML Decision: y € wy if y <7 —/4+ (8In2)/3 or y > 7+ (/4 + (8In2)/3

Bayes Decision: y € wy if y <5ory > 9

[\

The error probability can be computed by
Brr = plwn) J! =k expl—(z — 3)2/(2- 22)]de
+ plw){ /2 J5= exp[—(z — 6)*/2]dx

T i = expl—(x — 6)2/2da}

where a=4.5817, b=9.4183 for ML decision, and a=5, b=9 for Bayes decision, then
& Erry, = 0.1650 and Errpayes = 0.1532.
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O X|wy ~ Rayleigh(1?) and X|wy ~ Rayleigh(3?)

.CE2

T 9,2
20;

X .
plrlo) = Sexp(—oy), i=1,2

The Maximum Likelihood (ML) decision is to assign x to wy if p(x|wy) > p(x|ws)
The Bayes decision is to assign x to wy if p(z|wi)p(wi) > p(r|w2)p(ws)

Note that ML is the special case by assuming p(w;) = p(wz) = 5 which need not be true
3

in practical applications. We shall show the effect of p(wi) = ¥, p(ws) = i with o7 < 09.

|N>l\)

)

ML Decision: y € w; if 0 <y < \/25%03 x In(

)
037071

= )|

1N}

)+ In(323)

Bayes Decision: y € w; if 0 <y < \/:gf_cf% X [in( pws)

(o
g

=

The error probability can be computed by

Err = plwn) [ 2 exp(—35)do
+ p(ws) fi 2 exp(— 53 )do
= plwr) - exp(— o) + plwn)  [1 — exp(— )]

where t=2.2235 for ML decision, and t=2.7232 for Bayes decision, then
& Erry, = 0.1234 and Errpgyes = 0.1028.



13

O Xlwr ~ x2(r) and X|wy ~ x2(r9)

1

plefw) = r(r./2)2r_i/293(”/2)_16_”2’ z>0, i=1,2

The Maximum Likelihood (ML) decision is to assign = to wy if p(x|wi) > p(z|ws)
The Bayes decision is to assign z to wy if p(z|wi)p(wi) > p(x|ws)p(ws)

Note that ML is the special case by assuming p(w;) = p(w2) = 3 which need not be true
in practical applications. We shall show the effect of p(w;) = %, plws) = g with r1 < ro.

ML Decision:
F(T2/2)2(r2_r1)/2 > g(r2=r1)/2

vewr i w )

Bayes Decision:

F(T2/2)2(r2_r1)/zp(wl) > plra=r1)/2

yew of F(T’l/Q) p(wa)

The error probability can be computed by

Err = pwn) [ migaee P e e

+p(w2) fo tooaar P e Pda

When r; = 4,7y =8, p(wy) =1/7, p(wy) = 6/7, we have
t=4.899 for ML decision, and t=2.0 for Bayes decision, and

& Erry = 0.2411 and Errpges = 0.1214.
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O X|wy ~ N(py,0?) and X|ws ~ N(uz,03)

1 )
p(rlw;) = \/%U'ea:p[—(m - ui)2/202-2], i=1,2

The Maximum Likelihood (ML) decision is to assign x to wy if p(x|wy) > p(x|ws)
The Bayes decision is to assign x to wy if p(z|lwi)p(wi) > p(r|w:)p(ws)

Note that ML is the special case by assuming p(w;) = p(ws) = 3 which need not be true
in practical applications.

The error probability can be computed by

Err = p(wn) i 7y expl—(z — p)?/(207)]dx

T+ plws) ST i exp[—(x — p)?/(209)]de

O As soon as T is chosen, Parameters p(w;), it;, 0%, i = 1,2 could be estimated, so is Err.
e Otsu (1979) and Fisher (1936) chose 7' to maximize the following criterion, respectively
op = plw)p(ws)(p — pa)?

: _ (pa—p2)?
Fisher = i



A Simple Thresholding Algorithm
By Otsu, IEEE Trans. on SMC, 62-66, 1979

(1) p; < %, where n =Y 7' n;

(2) ur = S5 kpi
(3) Dofor k=0, G—-1
w(k) « Zf:opz’

u(k) Zf:o 1p;

[urw(k)—u(k))?
5(F) — i

(4) Select k* such that 0% (k) is maximized

Note that
o wy=w(k), up = XF ,iP(i|Co) = u(k) /w(k)
o wi=1-wk), w = T4 iP>ICr) = [ur — u(k)]/[1 - w(k)]

[ O'z, = CUOO'g +W10'1

023 = WQ(UO — UT)2 + wl(ul — UT)2

o3 = S5 (i — ur)?p;

2 | 2 _ 2
& o +og =07

bt

g 0'2 0'2
— — T — B
& =72, K= F A= &

LY
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Gamma Function and the Volumes of High
Dimensional Spheres

1. Define I(z) = [ e **~dt for > 0 and let v = [>°e~* dz. Then
(a) T(x) = J5 e dw = F
(b) Show that I'(3) =2y = /7
(c) T'(z+1) =2al(x), forx>0, I'(n)=(n—1)'ifne N.

(d) The volume of a d — dimensional unit sphere is 7%2/T(4 + 1).

The volume of a d—dim unite sphere is T[d/Z/F((d/2)+1)
6 T T

! !
(o] 5 10 15

Figure 1: The Volume of a High Dimensional Sphere.

V(1)=2; V(2)=pi;  V(3)=4%pi/3;

V(4)=pix*pi/2; V(5)=8*pi*pi/15; V(6)=pixpi*pi/6;
V(7)=16%pi*pi*pi/105;  V(8)=(pi) 4/24; V(9)=32% (pi) ~4/945;
V(10)=(pi)~5/120; V(11)=64*(pi)~5/10395; V(12)=(pi)~6/720;
V(13)=128*(pi)~6/135135; V(14)=(pi)"7/5040; V(15)=256*(pi) ~7/2027025;
D=1:15;

plot(D,V,’b-v’)
title(’The volume of a d-dim unit sphere is \pi~{d/2}/\Gamma((d/2)+1)’)
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The Derivation of Volumn for an n-Dimensional

Sphere

O For n = 2,

r1=rcosf, 0<60<2r O(x1, 73)

= o

ro=rsinf, 0<r<R o(r,0)

The volumn is computed by

VzZ/OR/OQWJgdrdG:/OR/OQWrdrdQZ

O For n = 3,
x1 =rcosbficosly, 0<0y <27

Ty =rcostsiny,, —5<6,<%, J3=

IN

x3 = rsin b, 0<r<R

The volumn is computed by

R ,m/2 2w R ,m/2 2w
V, = / / / Jodrd0ydfy = / / / r2 cos Oydrdfydfy =
0o J-n/2J0 0o J-n/2J0

ox1
or

9z1
90

9z1
or

ox1
001

9z
905

Oz
or

[

o0

Oz
or

[
001

Oz2
905

Oz3
or

Ox3
001

Oz3
005

=7

At R?

cos 6,



O For n > 4,

x1 =1cosf;cosfy - cos6,_sco80,_1,
To =1 cCosb;cosly - cos6,_osinb,_q,

r3 =1rcosbf;cosbly---cosb,_zsinb,_s,

xj =rcosfcosty---cosb,_;sinb, i,

Tp_1 = 7 cOs 07 sin Oy,

T, = rsin by,

Ogen—ISQﬂ-
_%Sen—QS%
_%Sen—?)gg
5 <0, <3
s s
1< <
0<r<R
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n
Note that fo =72 and denote ¢; = cosf;, s; =sinf; for 1 <i < mn — 1. Then the
i=1

Jacobian J,, =

A(x1,22,,Tn)

Dby 1 computed as

C1C2++ + Cpn—2Cp—1 C1C2 + + * Cpn—2Sn—1

—C1Cg -+ Sp—2Cp—1 —C1C2 - Sp—25p—1

—C1C2** + Cp—2S5p—1 C1C2 + + - Cp—2Cp—1

C1Co -

—81C2+**Cp—2Cp—1 —S51C2° - Cp—25p—1 —S51C2

—C182 " Cph—2Cp—1 —C152° " Ch—25p—1 —C152

C1Co -

*Cp—3Sp—2

cCp—3Sn—2

©Cp—3Sp—2

*Cp—3Cp—2

S1

&1




Then

n—1_n—1 n-2

€ G

1
..cn_lslsz...sn_l

tn—2

_tn—l

1 1
-t —l
—t9 —t9

_tn_2 t 1,2

L 0

0

, where t; =

19

sind;

cos 0;

Subtracting each column from the preceding one and do further simplifications, we obtain

In

n—1.n—1_n-2

= T &) Co

= T &) Co
= ’["n_lc?_2cg_3 “ e
— T,n—l

n—1.n—1_n-2

1 n—1
18182 Sp 1) (8 +

1 n—1
.. Cn_18182 e Sn—l]:[jzl(

Sj'C

1

1

J

cos" 20, cos” 36y --cos?0,_5cos' O,

)

J

)
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Therefore, the volumn of an n-dimensional sphere can be calculated by

2r /2 w/2 7r/2
v, = / / / / / T)d6:d0 - - - dB,_5d6, +dr
w/2 w/2J—7/2

2r  pm/2 /2 /2 _2 »
- / / / / / "7 0y cos" " 0y - - - cos 9n—2]d91d92 e dby,_odb, _ydr
7l'/2 w/2 7r/2
ﬂ.n/2 n
- T R

Note that the above computations exploit the properties of the following Gamma and

Beta functions, and trignometry.

MNa) = / e "t tdt for a >0
0

1
Beta(a, 5) = / 2711 — ) Ydx, where a, 3> 0
0

Beta(a, ) = @0

e Relationship Between Gamma and Beta Functions

Lx)'(y) = /Ooe_“ur_ldu/ooe_”vy_ldv
0 0
/OO /ooe_“_“ux_lvy_ldudv
o Jo
/ / (2t)" Hz(1 = 1))V tedtdz by putting u = zt, v = 2(1 —t)
z=0Jt O
o) 1
= / e_zz“y_ldz/ "1 — )yt
z=0 t=0
= I'(z+y)Beta(x,y)
I'a) = (a—I(a—1) fora>1
P =1, T =vr
2m /2
df, = 2, / €05y =2
—m/2

w/2 T /2 /2
/ cos? 0, _3db,_3 = > / cos™ 0df = 2cos™0df, 3<a<n-—2

—7/2 0
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Now
/2 0 1
2 cos™ = A — ‘ =
/0 cos™ 0db . x _mdx by letting x = cos 0
= /12xm(1 — ) Vdr = /12ym/2(1 — y)_l/Qidy where = \/y
0 0 2y 7
m__ 1 1 m 1
= /@/T5 y) Py = /QyTH‘l(l—y)Tldy
0
m D(H)I(5)
= Beta(— %) = F(2%+1)2
Therefore,
2r  pm/2 w/2 7r/2
/ / / / / §"2 0, cos™ 3 By - - - 08 Oy_o]dOrdBs - - - dBry_odf,_1dr
w/2 w/2 7r/2
n . e m+1 1 /2 "
= &.2m)-(2)-(5)- Hm=23Beta(T, 5) ENCESE R
2



