Covariance and Correlation Coefficient

For artibrary random variables X and Y, and constants a and b, we have

$$E[aX + bY] = aE[X] + bE[Y]$$

Proof: We'll show for the continuous case, the discrete case can be similarly proved.

$$E[aX + bY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (ax + by) f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ax f(x, y) dx dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} by f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} ax \left[\int_{-\infty}^{\infty} f(x, y) dy \right] dx + \int_{-\infty}^{\infty} by \left[\int_{-\infty}^{\infty} f(x, y) dx \right] dy$$

$$= a \int_{-\infty}^{\infty} x f_X(x) dx + b \int_{-\infty}^{\infty} y f_Y(y) dy$$

$$= a E[X] + b E[Y]$$

Similarly,

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i E(X_i)$$

Furthermore,

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy$$

[Example] Let $f(x,y) = \frac{1}{3}(x+y)$, 0 < x < 1, 0 < y < 2, and f(x,y) = 0 elsewhere.

$$E[XY] = \int_0^1 \int_0^2 xy f(x, y) dy dx = \int_0^1 \int_0^2 xy \frac{1}{3} (x + y) dy dx = \frac{2}{3}$$

• Let X and Y be independent random variables, then

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_X(x) f_Y(y) dx dy = \left[\int_{-\infty}^{\infty} x f_X(x) dx \right] \cdot \left[\int_{-\infty}^{\infty} y f_Y(y) dy \right] = E(X) \cdot E(Y)$$

 \bullet The covariance between r.v.'s X and Y is defined as

$$Cov(X,Y) = E[(X-\mu_X)(Y-\mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-\mu_X)(y-\mu_Y)f(x,y)dydx = E(XY)-\mu_X\mu_Y$$

- If X and Y are independent r.v.s, then Cov(X,Y) = 0.
- The correlation coefficient is defined by $\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$

Expectation and Covariance Matrix

Let X_1, X_2, \ldots, X_n be random variables such that the expectation, variance, and covariance are defined as follows.

$$\mu_j = E(X_j), \quad \sigma_j^2 = Var(X_j) = E[(X_j - \mu_j)^2]$$

$$Cov(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)] = \rho_{ij}\sigma_i\sigma_j$$

Suppose that $\mathbf{X} = [X_1, X_2, \dots, X_n]^t$ is a random vector, then the expected mean vector and covariance matrix of \mathbf{X} is defined as

$$E(\mathbf{X}) = [\mu_1, \mu_2, \dots, \mu_n]^t = \mu$$

$$Cov(\mathbf{X}) = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^t]$$

$$= [E((X_i - \mu_i)(X_j - \mu_j))]$$

- **Theorem 1:** Let X_1, X_2, \ldots, X_n be n independent r.v.'s with respective means $\{\mu_i\}$ and variances $\{\sigma_i^2\}$, then $Y = \sum_{i=1}^n a_i X_i$ has mean $\mu_Y = \sum_{i=1}^n a_i \mu_i$ and variance $\sigma_Y^2 = \sum_{i=1}^n a_i^2 \sigma_i^2$, respectively.
- **Theorem 2:** Let X_1, X_2, \ldots, X_n be n independent r.v.'s with respective moment-generating functions $\{M_i(t)\}, 1 \leq i \leq n$, then the moment-generating function of $Y = \sum_{i=1}^n a_i X_i$ is $M_Y(t) = \prod_{i=1}^n M_i(a_i t)$.

Multivariate (Normal) Distributions

 \diamondsuit (Gaussian) Normal Distribution: $X \sim N(u, \sigma^2)$

$$f_X(x) = f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp^{-(x-u)^2/2\sigma^2} \quad for - \infty < x < \infty$$

mean and variance: E(X) = u, $Var(X) = \sigma^2$

 \diamondsuit (Gaussian) Normal Distribution: $X \sim N(\mathbf{u}, C)$

$$f_X(\mathbf{x}) = f(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} [det(C)]^{1/2}} e^{-(\mathbf{x} - \mathbf{u})^t C^{-1}(\mathbf{x} - \mathbf{u})/2} \quad for \ \mathbf{x} \in \mathbb{R}^d$$

mean vector and covariance matrix: $E(X) = \mathbf{u}$, Cov(X) = C

- \diamondsuit Simulate $\mathbf{X} \sim N(\mathbf{u}, C)$
 - (1) $C = LL^t$, where L is lower- Δ .
 - (2) Generate $\mathbf{y} \sim N(\mathbf{0}, I)$.
 - (3) $\mathbf{x} = \mathbf{u} + L * \mathbf{y}$
 - (4) Repeat Steps (2) and (3) M times.

```
% Simulate N([1 3]', [4,2; 2,5])
%
n=30;
X1=random('normal',0,1,n,1);
X2=random('normal',0,1,n,1);
Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];
Yhat=mean(Y) % estimated mean vector
Chat=cov(Y) % estimated covariance matrix
% Z=[X1, X2];
```

Plot a 2D standard Gaussian Distribution

```
x=-3.6:0.3:3.6;
y=x';
X=ones(length(y),1)*x;
Y=y*ones(1,length(x));
Z=exp(-(X.^2+Y.^2)/2+eps)/(2*pi);
mesh(Z);
title('f(x,y)= (1/2\pi)*exp[-(x^2+y^2)/2.0]')
```

