
Introduction to Image Transform

• Fourier Transform

• Discrete Fourier Transform

• Fast Fourier Transform (FFT) O(N2 log(N))

• Discrete Cosine (Sine) Transform (JPEG)

• Discrete Wavelet Transform (JP2)

♦ Haar transform

♦ Daubechies’ Four transform

• Singular Value Decomposition (SVD)

♦ Spectrum Decomposition

• Hotelling (Karhunen-Loeve) Transform

♦ Principal Component Analysis (PCA)

♣ Other Transforms (Gabor, 9/7 and 5/3 Wavelets)



Introduction to Fourier Transform

Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x)
is defined by

F (u) =
∫ ∞

−∞
f(x)e−2πjuxdx

Given F (u), f(x) can be obtained by using the inverse Fourier transform

f(x) =
∫ ∞

−∞
F (u)e2πjuxdu

In practical applications, f(x) is a real function, however, its Fourier transform F (u)
is in general complex and can he written as

F (u) = R(u) + jI(u) = |F (u)|e−jφ(u)

where R(u) and I(u) are the real and imaginary component, respectively. |F (u)| is
called the Fourier spectrum of f(x), and φ(u) is called the phase angle of f(x). |F (u)|2
is called the Fourier power spectrum or spectral density) of f(x).

Example: Let f(x) = A for 0 ≤ x ≤ X, and f(x) = 0 otherwise. Then

F (u) =
A sin(πuX)

πu
e−jπuX

|F (u)| =
A sin(πuX)

πu
= AX|sin(πuX)

πuX
|



2D Fourier Transform

The extension of Fourier transform from 1D to 2D is obvious. The 2D Fourier
transform of f(x, y) can be written as

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2π(ux+vy)jdxdy

The 2D inverse Fourier transform of F (u, v) is then

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2π(ux+vy)jdudv

For a real function f(x, y), The Fourier transform F (u, v) of f(x, y) is in general complex
which can be written as

F (u, v) = R(u, v) + jI(u, v) = |F (u, v)|e−jφ(u,v)

where R(u, v) and I(u, v) are the real and imaginary component, respectively. |F (u, v)|
is called the Fourier spectrum of f(x, y) and φ(u, v) is called the phase angle of f(x, y),
|F (u, v)|2 is called the Fourier power spectrum or spectral density of f(x, y).

Example: Let f(x, y) = A if 0 ≤ x ≤ X, 0 ≤ y ≤ Y , and f(x, y) = 0 otherwise. Then

F (u, v) =
A

πuv
sin(πuX)e−jπuX sin(πvY )e−jπvY

|F (u, v)| = AXY |sin(πuX)

πuX
||sin(πvY )

πvY
|



Discrete Fourier Transform (DFT)

For many applications, Discrete Fourier transform (DFT) may be more useful than
the continuous FT. The DFT of f(x), 0 ≤ x ≤ N − 1 is defined as

F (u) =
1

N

N−1∑
x=0

f(x)e−2πuxj/N for u = 0, 1, · · · , N − 1.

The inverse DFT of F (u), 0 ≤ u ≤ N − 1 is defined as

f(x) =
N−1∑
u=0

F (u)e2πuxj/N for x = 0, 1, · · · , N − 1.

For 2D DFT, we have

F (u, v) =
1

NM

M−1∑
x=0

N−1∑
y=0

f(x, y)e−2π[ ux
M

+ vy
N

]j for 0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1

The inverse DFT of F (u, v), 0 ≤ u ≤ M − 1, 0 ≤ v ≤ N − 1, is defined as

f(x, y) =
M−1∑
u=0

N−1∑
v=0

F (u, v)e2π[ ux
M

+ vy
N

]j for 0 ≤ x ≤ M − 1, 0 ≤ v ≤ N − 1

Example: Let f(0)=0.5, f(1)=0.75, f(2)=1.00, f(3)=1.25. Then

F (0) = 0.875, F (1) = −0.125 + 0.125j, F (2) = −0.125, F (3) = −0.125 + 0.125j.



Introduction to Fast Fourier Transform

Assume that N = 2n and M = N
2
. The DFT is defined as

F (u) =
1

N

N−1∑
x=0

f(x)ωux
N , where ωN = e−2πj/N , ∀ 0 ≤ u ≤ N

Then

F (u) =
1

2M

2M−1∑
x=0

f(x)ωux
2M =

1

2

[
1

M

M−1∑
x=0

f(2x)ω
u(2x)
2M +

1

M

M−1∑
x=0

f(2x + 1)ω
u(2x+1)
2M

]

Note that
ω2ux

2M = ωux
M , ωu+M

M = ωu
M , and ωu+M

2M = −ωu
2M

Define

Feven(u) =
1

M

M−1∑
x=0

f(2x)ωux
M , Fodd(u) =

1

M

M−1∑
x=0

f(2x + 1)ωux
M

Thus

F (u) =
1

2
[Feven(u) + Fodd(u) ∗ ωu

2M ]

F (u + M) =
1

2
[Feven(u) − Fodd(u) ∗ ωu

2M ]



Computational Complexity of Fast Fourier
Transform

To implement the above FFT, let

m(n) = # of complex multiplications

a(n) = # of complex additions/subtractions

Then
m(n) = 2m(n − 1) + 2n−1, where m(0) = 0, m(1) = 1.

a(n) = 2a(n − 1) + 2n, where a(0) = 0, a(1) = 2.

Then
m(n) = 2m(n − 1) + 2n−1

= 2[2m(n − 2) + 2n−2] + 2n−1

= . . .

= 2n−1 × m(1) + (n − 1) × 2n−1

= 2n−1 × n

= 1
2
N log2 N

Similarly
a(n) = 2n log2 N = N log2 N



Implement Inverse FFT by Forward FFT Algorithm

F (u) =
1

N

N−1∑
x=0

f(x)e−2πuxj/N for 0 ≤ u ≤ N − 1

f(x) =
N−1∑
u=0

F (u)e2πuxj/N for 0 ≤ x ≤ N − 1

f ∗(x) =
N−1∑
u=0

F ∗(u)e−2πuxj/N for 0 ≤ x ≤ N − 1

Then
1

N
f ∗(x) =

1

N

N−1∑
u=0

F ∗(u)e−2πuxj/N

Similarly
1

N2
f ∗(x, y) =

1

N2

N−1∑
u=0

N−1∑
v=0

F ∗(u, v)e−2π(ux+vy)j/N



Discrete Cosine Transform (DCT)

The 1D DCT of f(x), 0 ≤ x ≤ n − 1 can be defined as

C(0) =
1√
n

n−1∑
x=0

f(x)

C(u) =

√
2√
n

n−1∑
x=0

f(x) cos

[
(2x + 1)uπ

2n

]
, u = 1, 2, · · · , n − 1

The inverse DCT of C(u), 0 ≤ u ≤ n − 1, is then defined as

f(x) =
C(0)√

n
+

√
2√
n

n−1∑
u=1

C(u) cos

[
(2x + 1)uπ

2n

]
, x = 0, 1, · · · , n − 1

The n-point DCT Implementation could be done by applying 2n-point FFT.

C(0) =
1√
n

n−1∑
x=0

f(x)

C(u) =

√
2√
n
× Real

[
e−πuj/2n ·

2n−1∑
x=0

f(x)e−πuxj/n

]

where u = 1, 2, · · · , n − 1, f(x) = 0 ∀ x = n, n + 1, · · · , 2n − 1



2D Discrete Cosine Transform

The corresponding 2D DCT pair is defined as

C(u, v) = αuαv

n−1∑
x=0

n−1∑
y=0

f(x, y) cos[
(2x + 1)uπ

2n
] cos[

(2y + 1)vπ

2n
] for 0 ≤ u, v ≤ n − 1

The inverse DCT of C(u, v) is defined as

f(x, y) =
n−1∑
u=0

n−1∑
v=0

αuαvC(u, v) cos[
(2x + 1)uπ

2n
] cos[

(2y + 1)vπ

2n
] for 0 ≤ x, y ≤ n − 1

where

αu =

⎧⎪⎪⎨
⎪⎪⎩

1√
n

if u = 0,

√
2√
n

if 1 ≤ u ≤ n − 1

In practice, n = 8 is used, we have

C(u, v) =
γuγv

4

7∑
x=0

7∑
y=0

f(x, y) cos[
(2x + 1)uπ

16
] cos[

(2y + 1)vπ

16
]

f(x, y) =
1

4

7∑
u=0

7∑
v=0

γuγvC(u, v) cos[
(2x + 1)uπ

16
] cos[

(2y + 1)vπ

16
]

where γ0 = 1√
1
, and γv = 1 if v = 1, 2, · · · , n − 1



DCT in Matrix Forms

Y = CXCt, where X is an 8 × 8 image block and C = Q8 and Q4 are orthogonal
matrices defined below

Q8 =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

cos π
16

cos3π
16

cos5π
16

cos7π
16

cos9π
16

cos11π
16

cos13π
16

cos15π
16

cos2π
16

cos6π
16

cos10π
16

cos14π
16

cos18π
16

cos22π
16

cos26π
16

cos30π
16

cos3π
16

cos9π
16

cos15π
16

cos21π
16

cos27π
16

cos33π
16

cos39π
16

cos45π
16

cos4π
16

cos12π
16

cos20π
16

cos28π
16

cos36π
16

cos44π
16

cos52π
16

cos60π
16

cos5π
16

cos15π
16

cos25π
16

cos35π
16

cos45π
16

cos55π
16

cos65π
16

cos75π
16

cos6π
16

cos18π
16

cos30π
16

cos42π
16

cos54π
16

cos66π
16

cos78π
16

cos90π
16

cos7π
16

cos21π
16

cos35π
16

cos49π
16

cos63π
16

cos77π
16

cos91π
16

cos105π
16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q4 =
1√
2

⎡
⎢⎢⎢⎢⎣

1√
2

1√
2

1√
2

1√
2

cosπ
8

cos3π
8

cos5π
8

cos7π
8

cos2π
8

cos6π
8

cos10π
8

cos14π
8

cos3π
8

cos9π
8

cos15π
8

cos21π
8

⎤
⎥⎥⎥⎥⎦ ≈ 1

26

⎡
⎢⎢⎢⎣

13 13 13 13
17 7 −7 −17
13 −13 −13 13
7 −17 17 −7

⎤
⎥⎥⎥⎦



Quantization Table and An 8×8 Image Block

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 1: Quantization Table for DCT Coefficients

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 162 162 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158

Table 2: An 8× Image Block X



An 8×8 Image Block and Its DCT Coefficients

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 162 162 155 155 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158

Table 3: An 8× Image Block X

235.6 -1.0 -12.1 -5.2 2.1 -1.7 -2.7 1.3
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -1.2
-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1
-7.1 -1.9 0.2 1.5 0.9 -0.1 -0.0 0.3
-0.6 -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3
1.8 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0

-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8
-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4

Table 4: DCT Coefficients of Image Block X



Representation of Quantized DCT Coefficients

235.6 -1.0 -12.1 -5.2 2.1 -1.7 -2.7 1.3
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -1.2
-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1
-7.1 -1.9 0.2 1.5 0.9 -0.1 -0.0 0.3
-0.6 -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3
1.8 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0

-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8
-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4

Table 5: DCT Coefficients of Image Block X

15 0 -1 0 0 0 0 0
-2 -1 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 6: Quantized DCT Coefficients for Image Block X

Suppose that the quantized DC coefficient for the last block is 12.

(S,2,3), (1,2,-2), (0,1,-1), (0,1,-1), (0,1,-1), (2,1,-1), (0,1,-1) EOB



DAUB4 Wavelet Transformation Matrix

c0 = 1+
√

3
4
√

2
, c1 = 3+

√
3

4
√

2
, c2 = 3−√

3
4
√

2
, c3 = 1−√

3
4
√

2

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 c3

c3 −c2 c1 −c0

c0 c1 c2 c3

c3 −c2 c1 −c0

. . .
. . .

c0 c1 c2 c3

c3 −c2 c1 −c0

c2 c3 c0 c1

c1 −c0 c3 −c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W = DAUB4, c0
2 + c1

2 + c2
2 + c3

2 = 1.

Y ← P ∗4 W ∗3 X ∗1 W t ∗2 Q



A 3-scale Daubechies’ four transform of an 8×8
image

64 90

67 93

83 88

89 82

65 79

59 74

79 69

91 62

127 174

125 175

174 179

180 178

127 169

117 170

180 181

182 181

57 82

59 75

98 57

104 58

59 79

61 76

105 67

100 67

102 162

90 163

180 180

187 183

74 159

65 131

189 182

188 186

935 -316

21 -3

61 -84

0 -75

-4 5

29 7

11 3

18 0

2 -11

24 -9

10 -73

15 -71

46 -39

36 -52

25 -76

37 -74

-2 -4

4 -2

0 2

-4 -5

2 2

-1 7

10 -1

18 -6

-6 7

2 1

-1 3

-2 -4

1 -10

-14 12

0 -1

-11 0



Haar Wavelet Transformation Matrix

c0 = 1/
√

2, c1 = 1/
√

2.

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1

c0 −c1

c0 c1

c0 −c1

. . .
. . .

c0 c1

c0 −c1

c0 c1

c0 −c1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y ← P ∗4 H ∗3 X ∗1 H t ∗2 Q



Example of 3-scale Haar transform of an 8×8 image

64 90

67 93

83 88

89 82

65 79

59 74

79 69

91 62

127 174

125 175

174 179

180 178

127 169

117 170

180 181

182 181

57 82

59 75

98 57

104 58

59 79

61 76

105 67

100 67

102 162

90 163

180 180

187 183

74 159

65 131

189 182

188 186

926 -325

26 -19

-12 -62

-26 -131

19 1

-4 18

0 7

4 24

-26 0

-14 19

-48 -1

-47 0

-20 43

-17 35

-66 2

-75 4

-2 0

4 -2

0 -2

4 0

2 -2

0 2

5 -4

17 -1

0 -5

0 -8

0 -2

4 0

-3 -2

-2 2

5 -1

-9 1



Singular Value Decomposition (SVD) + PCP

Spectrum Decomposition Theorem: A = WΛW t

Every symmetric matrix can be diagonalized.

SVD Theorem: A = UΣV t =
∑k

i=1 σiuiv
t
i

Each matrix A ∈ Rm×n can be decomposed as A = UΣV t, where both U ∈ Rm×m

and V ∈ Rn×n are orthogonal. Moreover, Σ ∈ Rm×n = diag[σ1, σ2, . . . , σk, 0, . . . , 0]
is essentially diagonal with the singular values satisfying σ1 ≥ σ2 ≥ . . . ≥ σk > 0,
and σj = 0 ∀ j ≥ (k + 1).

Example:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 −2 6 6

−2 2 −6 −6

6 −6 5 −1

6 −6 −1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then Σ(A) = diag[16, 8, 6, 0], λ(A) = {16,−8, 6, 0}.

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 − 1√
2

−1
2

−1
2

0 − 1√
2

1
2

−1
2

− 1√
2

0

1
2

−1
2

1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−1
2

0 1√
2

−1
2

1
2

0 1√
2

1
2

1
2

− 1√
2

0

1
2

1
2

1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

0 − 1√
2

1
2

1
2

0 − 1√
2

−1
2

1
2

1√
2

0

−1
2

1
2

− 1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Gabor Filter(s) and Transform(s)

A 2-dimensional (symmetrical) gabor filter can be defined as

f(x, y) = exp

(
−1

2

[
x2

σ2
x

+
y2

σ2
y

])
× cos[2πµ0(x cos θ + y sin θ)] (1)

where µ0 is the frequency of a sinusoidal plane and σx and σy are corresponding to the
variance of the Gaussian distribution (shape). Simple computations lead to the Fourier
transform which possesses a similar form as the gabor filter has.

F (u, v) = πσxσy

{
exp

(
−1

2

[
(u−µ0 cos θ)2

σ2
u

+ (v−µ0 sin θ)2

σ2
v

])

+ exp
(
−1

2

[
(u+µ0 cos θ)2

σ2
u

+ (v+µ0 sin θ)2

σ2
v

])
where σu = 1

2πσx
, σv = 1

2πσy
.

I[x, y] ∗ Fj[x, y] = InvFT{FT (I[x, y])× FT (Fj[x, y])}


