Introduction to Image Transform

e Fourier Transform

e Discrete Fourier Transform

e Fast Fourier Transform (FFT) O(N?log(N))
e Discrete Cosine (Sine) Transform (JPEG)

e Discrete Wavelet Transform (JP2)
> Haar transform
{> Daubechies’ Four transform
e Singular Value Decomposition (SVD)
{ Spectrum Decomposition
e Hotelling (Karhunen-Loeve) Transform

¢ Principal Component Analysis (PCA)

& Other Transforms (Gabor, 9/7 and 5/3 Wavelets)



Introduction to Fourier Transform

Let f(x) be a continuous function of a real variable . The Fourier transform of f(x)
is defined by

F(u) :/ f(x)e ™" dy
Given F'(u), f(z) can be obtained by using the inverse Fourier transform

f(z) = /OO F(u)e*™"* du

—00

In practical applications, f(x) is a real function, however, its Fourier transform F'(u)
is in general complex and can he written as

F(u) = Ru) + j1(u) = |F(u) e

where R(u) and I(u) are the real and imaginary component, respectively. |F'(u)]| is
called the Fourier spectrum of f(z), and ¢(u) is called the phase angle of f(z). |F(u)|?
is called the Fourier power spectrum or spectral density) of f(x).

Example: Let f(x) = A for 0 <z < X, and f(x) = 0 otherwise. Then

Asin(muX)
= ——7e¢
T

—jmuX

_ Asin(muX) AX‘sin(ﬁuX)

F
|F(w)] ™ TuX



2D Fourier Transform

The extension of Fourier transform from 1D to 2D is obvious. The 2D Fourier
transform of f(x,y) can be written as

Py = [ [ e =ty
The 2D inverse Fourier transform of F(u,v) is then

flx,y) :/ / F(u, v)e2™ @093 dydy

For a real function f(x,y), The Fourier transform F(u,v) of f(z,y) is in general complex
which can be written as

F(u,v) = R(u,v) + jI(u,v) = |F(u, v)|e 790

where R(u,v) and I(u,v) are the real and imaginary component, respectively. |F(u,v)|
is called the Fourier spectrum of f(x,y) and ¢(u,v) is called the phase angle of f(x,y),
|F(u,v)|? is called the Fourier power spectrum or spectral density of f(x,y).

Example: Let f(z,y) =Aif0<x <X, 0<y <Y, and f(x,y) =0 otherwise. Then

A , .
F(u,v) = — sin(ruX)e ™ sin(rvY)e ™Y

sin(muX)
muX

sin(mvY)
mvY

|F(u,v)] = AXY] I |



Discrete Fourier Transform (DFT)

For many applications, Discrete Fourier transform (DFT) may be more useful than
the continuous FT. The DFT of f(x), 0 <x < N —1 is defined as

1= :
:Nz_: e 2muwi/N - for 4 =0,1,---,N — 1.

The inverse DFT of F(u), 0 <u < N — 1 is defined as

N-1
flx)=>" F(u)e*™@i/N for 2=0,1,---,N —1.
u=0

For 2D DFT, we have

1M1N1

F(u, Zfoy’Q“m ofor 0<u<M-1,0<v<N-1
acOyO

The inverse DFT of F(u,v), 0 <u <M —1, 0<v <N —1, is defined as
M—1N-1 i
f(%y):ZZF(U,U 2 NI for 0<z<M-1,0<v<N-1
u=0 v=0

Example: Let f(0)=0.5, f(1)=0.75, f(2)=1.00, f(3)=1.25. Then

F(0) = 0.875, F(1) = —0.125 + 0.125j, F(2) = —0.125, F(3) = —0.125 + 0.125.



Introduction to Fast Fourier Transform

Assume that N = 2" and M = X. The DFT is defined as

2

1 3= .
:NZ T)wy', where wN:e’QW/N, VO<u<N

Then
i 1 u(2:t+1)
F(u):—Zf(x)wQM—— ZfoWQM +_Zf233+
2M = 2
Note that
W3 =, WiV =wly, and Wi = —uly,
Define
1 M-1 M-1
Feven(u) — M Z f(2x)w}ff, Fodd( ) EY: Z f(21' + 1)
=0 =0
Thus ]
F(U) = 5 [Feven( ) + Fodd( ) * w2M]
1
F(u+ M) 2 [Feven(u) — Foaa(u) * wyyy]



Computational Complexity of Fast Fourier
Transform

To implement the above FF'T, let
m(n) = # of complex multiplications

a(n) = # of complex additions/subtractions

Then
m(n) =2m(n — 1) +2""'  where m(0) =0, m(1)=1.

a(n) =2a(n — 1)+ 2", where a(0) =0, a(l)=2.

Then
m(n) = 2m(n—1)+2""!

= 2[2m(n —2)+2" 2] + 2!

= 2"t xm(l)+(n—1) x 2!
= 2" lxn

= %N log, N

Stmilarly
a(n) = 2"logy, N = Nlog, N



Implement Inverse FFT by Forward FFT Algorithm

1 = .
F(u)= 5 X f@)e™™ N for 0<u<N -1
=0
N-1 '
flx) =3 F(u)e™ /N for 0<z<N-1
u=0
N-1 '
f*(l') _ Z F*(u) —2nuxj /N f07° 0 Sx S N —1
u=0
Then
1 1 N-1 ) N
—f* E— F* —27ux
Nf (z) N E) (u)
Simalarly
1 1 N—1N-1 ‘
/@y = 15 F*(u, v)e~2rua+o)i/N



Discrete Cosine Transform (DCT)

The 1D DCT of f(x), 0 <x <n—1 can be defined as

1n1

Zf

Zf 2n

The inverse DCT of C(u), 0<wu<n-—1,is then defined as

V2 il 2 1
COS{M]) w121

c(0) V2 (296 + ur
2n

f(l')_ \/— ZC ], Z':O,l,“-,n—l

The n-point DCT Implementation could be done by applying 2n-point FF'T.

1 n—1
C(0) = Jn Z:Of(x)
Clu) = @ X Real |e™™/?" . 275:1 f(l‘)efﬂ'uwj/n

vn

where u=1,2,--- n—1, f(x)=0 Ye=nn+1,---,2n—1



2D Discrete Cosine Transform

The corresponding 2D DCT pair is defined as

Clu,v) = ayon, Y > f(z,y) cos[( ’ +n )WT] cos[( y_;n )WT] for 0<u,v<n-—1
z=0 y=0
The inverse DCT of C(u,v) is defined as
flzoy) =Y awa,Cu,v) cos[( ’ +n )WT] COS[( Y —;n )mr] for 0<z,y<n-—1
u=0 v=0
where
ﬁ if u=0,
ay =

2 ifl1<u<n-1

In practice, n = 8 s used, we have

C(u, U) — 7u47v z_:o z_:o f(l‘, y) COS[(Qx —|1—61)U7T] COS[(Qy —|1—61)1)7T]
f(l’, y) - i 2_:0 z_:()’yu'yvC(ug U) COS[(Qx 41_61)1”1—] COS[(2y —:61)1)77-]

where%:%, and v, =1ifv=1,2---,n—1



DCT in Matrix Forms

Y = CXC", where X is an 8 X 8 image block and C = Qg and Q4 are orthogonal
matrices defined below

r L 1 1 1 1 1 1 1 7

\/§7r V2 T \/§57r \/§7ﬂ \/§9ﬂ \/?171' \/?371' \/?Em

cosg cosg COSEr COSEr Cosfg COSE COSE COSE

) cosg cosg COSE COSE cosg COSE 005319—67r COSE

Qs = ~ cosg COSEr COSE COSE 008316_6% COSE 005512—67r cosﬁ
2 cosg cosg COSE COSE cosg COSE cosg cosg
cosg COSE COSE COSE COSE COSE cosg COSE

cos% COSE COSE COSE cosg COSE COSE co:sulgT

| cosTg COSTE COSTE  COSTE  COSSE  COSHE COSTE  cOoSTEn |

5 0 7 NG 13 13 13 13

0 _ 1 | cosE cos®E cosF 005727’r T 7T =7 17
NG cos3E cos®E costE costE T 26| 13 —-13 —13 13
cos%T cos%T cosl%7r 0032%r 7T =17 17 -7



Quantization Table and An 8x8 Image Block

16 11 10 16 2 40 51 61
12 12 1) 19 26 58 60 55
14 18 16 2/ 40 57 69 56
1 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
2/ 35 55 6 81 10/ 113 92
49 64 78 87 105 121 120 101
7292 95 98 112 100 103 99

Table 1: Quantization Table for DCT Coefficients

139 174 149 155 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 165 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 162 162 155 155 155
161 161 161 161 160 157 157 157
162 162 161 165 162 157 157 157
162 162 161 161 165 158 158 158

Table 2: An 8x Image Block X



An 8x8 Image Block and Its DCT Coefficients

139 144 149 153 155 155 155 155
144 151 153 156 159 156 156 156
150 155 160 163 158 156 156 156
159 161 162 160 160 159 159 159
159 160 161 162 162 155 1556 155
161 161 161 161 160 157 157 157
162 162 161 163 162 157 157 157
162 162 161 161 163 158 158 158

Table 3: An 8x Image Block X

235.6 -1.0 -12.1 -5.2 2.1 -1.7 -2.7 1.8
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -12
-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1
-7.1  -1.9 0.2 1.5 09 -0.1 -0.0 0.3
-0.6  -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3
1.5 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0
-1.8 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8
-2.0 1.6 -38 -1.8 19 1.2 -0.6 -04

Table 4: DCT Coefficients of Image Block X



Representation of Quantized DCT Coefficients

235.6 -1.0 -12.1 -5.2 2.1 -1.7 -2.7 1.3
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -12
-10.9 -9.3 -1.6 1.5 0.2 -0.9 -0.6 -0.1
-7.1 -1.9 0.2 1.5 09 -0.1 -0.0 0.3
-0.6  -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3
1.8 -0.2 1.6 -0.3 -0.8 1.5 1.0 -1.0
-1.3  -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8
-2.6 1.6 -38 -1.8 1.9 1.2 -0.6 -04

Table 5: DCT Coefficients of Image Block X

15 0 -1 0 0 0 0 0
-2 -1 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
o o0 0 0 0 0 0 0
g 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0

Table 6: Quantized DCT Coefficients for Image Block X

Suppose that the quantized DC coefficient for the last block is 12.

(S,2,3), (1,2,-2), (0,1,-1), (0,1,-1), (0,1,-1), (2,1,-1), (0,1,-1) EOB



DAUB4 Wavelet Transformation Matrix

Co C1 Cg C3

C3 —C € —C
Co C1 Co C3
Cg —C C1 —(

Co C1 Co C3
C3 —Cp C1 —(
(6)) C3 Co C1
Cci —Cp C3 —Cy

W:DAUB4, 002 + 012 + 022 + 032 = 1.

Y « P oxg W o3 X 5 W' % Q



A 3-scale Daubechies’ four transform of an 8 x8
image

64 90 83 88 |127 174 174 179
67 93 89 82125 175 180 178
65 79 79 69 | 127 169 180 181

59 T4 91 62 | 117 170 182 181

57 82 98 57 | 102 162 180 180
59 75 104 58 | 90 163 187 183
59 79 105 07 | 74 159 189 182

61 76 100 67| 65 131 188 186

935(-816| 61 -84 | 2 -11 10 -73

20 -3 | 0 -75| 24 -9 15 -71

-4 5 111 3 | 46 -39 25 -76

29 7|18 0|36 -52 37 -

2 2 10 -1 17 -10 0 -1




Haar Wavelet Transformation Matrix

co=1/V2, c1 =1/V/2.

Co C1

Ch —C
Co (&1
Ch —C

Co C1

Ch —C
Co C1
o —C

Y<—P*4H*3X*1Ht>k2Q



Example of 3-scale Haar transform of an 8x8 image

64 90 83 88 |127 174 17 179
67 93 89 82| 125 175 180 178
65 79 79 69 | 127 169 180 181

59 T4 91 62 | 117 170 182 181

57 82 98 57 | 102 162 180 180
59 75 104 58 | 90 163 187 183
59 79 105 07 | 74 159 189 182

61 76 100 67| 65 131 188 186

926 |-825| -12 62| -26 0 48 -1

26| -19 | -26 -131|-14 19 -47 0

19 1 0 7 01-20 43 -66 2




Singular Value Decomposition (SVD) + PCP

Spectrum Decomposition Theorem: A = WAW?!

Every symmetric matrix can be diagonalized.

SVD Theorem: A =UXV! =% ouvi

Each matrix A € R™™ can be decomposed as A = UXV?, where both U € R™*™
andV € R™ "™ are orthogonal. Moreover, ¥ € R™*" = diag|oy,09,...,0k,0,...,0]

18 essentially diagonal with the singular values satisfying o4 > 09 > ... > o3 > 0,
ando; =0V j> (k+1).

Example:

-1 5
Then %(A) = diag|16,8,6,0], \(A) = {16, —8,6,0}.

o
|
o

r 1 1 1 7] r 1 1 1 7
: 2 0 -5 : 2 0 5
1 1 1 1 1 1
-2 2 U -5 -2 2 U &5
U: ’V:

1 1 1 1 1 1
s 2 —v5 U : 3z —wvi U
1 1 1 1 1 1
L2 2 0] L2 2 o V]

r 1 1 1 7]

: 32 0 =5

1 1 1

s 3 0 =5

W =

1 1 1

23 »n 0

1 1 1

22— U]




Gabor Filter(s) and Transform(s)

A 2-dimensional (symmetrical) gabor filter can be defined as

f(z,y) =exp <_1 [xQ I g_ﬂ) X cos[27pg(z cosf + ysin 6)] (1)

o2
2 oz ;

where [1g is the frequency of a sinusoidal plane and o, and o, are corresponding to the
variance of the Gaussian distribution (shape). Simple computations lead to the Fourier
transform which possesses a similar form as the gabor filter has.

— 0)2 (v—po sin 0)?
Flu,v) = mo,o {ex (—l [(“ 1o coS
( ’ ) oy p 2 a2 - o2
+ exp (_% |:(U+M(;(23050)2 ('U+N(()T;1H6)2i|)
— _1 1
WhETE Ou = 257 Ov = Tng,

Ha,yl« Fyle,y] = InvFT{FT(I[z,y]) x FT(Fjlz,y])}



