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ABSTRACTABSTRACT

Steganography refers to embedding information or secret
message into media. This paper presents a simple and secure
high capacity steganographic algorithm for information hidinghigh-capacity steganographic algorithm for information hiding.
We synthesize a cover-image texture with four gray levels 32,
96, 160, and 224 of user-selected size based on a Markov, ,
Random Field (MRF) model. On the other hand, each byte of
the secret information (secret message, image, etc.) is first
encrypted based on an exponential modular arithmetic which
is then partitioned into two 4-bit words. Each 4-bit word in
[0 15] is inserted into the last four bits of a pixel in the selected[0,15] is inserted into the last four bits of a pixel in the selected
cover-image to form a stego-image. The embedding capacity
for an m by n cover-image could be as high as (m × n)/2.y g g ( )



A Flowchart of Proposed 
Steganography



Algorithm (GIM) for Cover Image 
Generation



Cover Images Generated byCover Images Generated by 
Markov Random Model

θ=(1,1,1-1) θ=(2,2,-1,-1)



Message Converted into Bitstream 
(1/3)

• Suppose a secret message ‘hide’ is to be 
embedded into a cover image consisted of g
pixels Pixel(1), Pixel(2), ….,Pixel(K). Each 
Pixel(j) has one of the valuesPixel(j) has one of the values 
32 = 001000002 ,  96 = 011000002 ,

160 = 101000002 , 224 = 110000002

For exampleFor example,
Pixel(1)=96, Pixel(2)=32, Pixel(3)=160, etc.



Message Converted into Bitstream 
(2/3)

1. h,i,d,e = 104,105,100,101 in ASCII code
2 A permutation is done on {0 1 2 255} by2. A permutation is done on {0,1,2,…255} by

y+1=gx+1 mod p=257, so that x could be     
transformed into y, and vice versa.

3 Take g=83 then (104 105 100 101) will be3. Take g=83, then (104,105,100,101) will be 
transformed into (159,172,217,103)

4. 159=100111112 is splitted as 1001 & 1111



Message Converted into Bitstream 
(3/3)

1. The ASCII code for h is 104 which is 
converted to 159=10011111 and is further 
processed as 1001 and 1111

2 Q(1)=Pixel(1)+000010012. Q(1)=Pixel(1)+00001001
3. Q(2)=Pixel(2)+00001111
The procedures continued until all of the 
message stored as a character sequencemessage stored as a character sequence 
have been embedded into the cover image.



Th E iThe Experiment

A 128x128 Cover Image A Secret Message
Steve Jobs to 2005 graduates : 'Stay hungry, stay
foolish'

Drawing from some of the most pivotal points in his life, 
Steve Jobs chief executive officer and co-founder ofSteve Jobs, chief executive officer and co founder of 
Apple Computer and of Pixar Animation Studios, 
urged graduates to pursue their dreams and see the 
opportunities in life's setbacks—including death 
itself—at the university's 114th Commencement on 
Sunday in Stanford Stadium.Sunday in Stanford Stadium.

………….
"I'm pretty sure none of this would have happened if I hadn't 

been fired from Apple," Jobs said. "I'm convinced that 
the only thing that kept me going was that I loved what 
I did "I did.

………….
"I just think it's a remarkable accomplishment to get through 

this school," she said. "Just the challenge of being 
here."



A C I d S IA Cover Image and Stego Image

A 128x128 Cover Image The Stego Image



Conclusion and Discussion (1/2)Conclusion and Discussion (1/2)

(1)JPEG Images As Cover Images

A cover image of JPEG available 
h d i b d Di teverywhere nowadays is based on Discrete 

Cosine Transform (DCT) by ignoring the 
quantized 0 and 1 coefficients which occupy 
major percentage of an image and thusmajor percentage of an image and thus 
shorten the embedding capacity.



Conclusion and Discussion (2/2)Conclusion and Discussion (2/2)

(2) MRF-Synthesized Cover Images
We propose using a synthesized coverWe propose using a synthesized cover 

image based on Markov Random Model 
which can generate a cover image to meetwhich can generate a cover image to meet 
the requirement of message size. This cover 
image provides high-capacity embedding 
rate. The available embedded capacity in p y
our scheme is (mxn)/2 characters with user 
selected (m,n) for image (#rows, #columns)selected (m,n) for image (#rows, #columns)



Textures Generated by Markov Random Field Models

Using Markov random fields (Mrf) to synthesize textures is a challenging task. We
will review Mrf and give algorithms for synthesizing textures.

1 Background of the Markov Random Field

Let x, an M ×N texture pattern, be represented as a matrix whose elements take values
from the set A = {0, 1, ..., G− 1}. Let Ω = {x | xt = x(i, j) ∈ A}, be the set of all possible
texture patterns, and let S = {1, ..., MN} be the sites of a matrix ordered by a raster scan.
A Gibbs random field (Grf) is a joint probability mass function defined on Ω which satisfies

P (x) = e−U(x)/Z, (1)

where U(x) is the energy function and Z =
∑

y∈Ω e−U(y) is the partition function.
A Markov random field is a Gibbs random field whose probability mass function satisfies

the following conditions.

(a) Positivity: P (X = x) > 0 for all x ∈ Ω.

(b) Markov property: For all t ∈ S, P (Xt = xt|Xr = xr, r �= t) = P (Xt = xt|Xr =
xr, r ∈ Rt),

where Rt is the ordered set of neighbors of site t.

(c) Homogeneity: P (xt|Rt) does not depend on a particular site t.

Figure 1 defines the relative sites and orders of neighbors of site t. A Grf and an Mrf are
equivalent with respect to a specified neighborhood system.
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Figure 1: The relative sites and orders of neighbors of site t.
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A Gibbs random field is completely characterized by its energy function. In this pa-
per, two commonly used Mrf models whose energy functions have the following form are
introduced:

U(x) =
MN∑
t=1

F (xt) +
MN∑
t=1

c∑
r=1

H(xt, xt:+r), (2)

where H(a, b) = H(b, a) and c depends on the size of the neighborhood. For example, c
= 2, 4 for 1st-order and 2nd-order neighborhoods, respectively. Two Mrf models are defined
below.

1.1 Generalized Ising Model (GIM)

Let A = {0, 1, ....., G − 1}; the F and H functions of (2) in the generalized Ising model
are defined as F (xt) = αxt and H(xt, xt:+r)= θrI(xt, xt:+r), where I(a, b) = −1 if a = b and
I(a, b) = 1, otherwise.

Simple derivation gives the conditional density:

P (xt|Rt) = exp[−αxt −
c∑

r=−c

θrI(xt, xt:+r)] /
∑
s∈A

exp[−αs −
c∑

r=−c

θrI(s, xt:+r)]. (3)

An algorithm for simulating the generalized Ising model (GIM) is given below. The
synthesized textures obtained based on GIM with the parameters M = N = 128 and
θ = (1, 1, 1,−1) are shown in Figure 5(a).

Algorithm GIM

(1) For s=1 to MN, randomly assign a g ∈ A for xs to give an initial image x.

(2) For s=1 to MN Do

(a) Let yt = xt for all t �= s. Choose g ∈ A at random and let ys = g.

(b) Let r = min{1, P (y)/P (x)}, where P is as defined in eq. (1).

(c) x ←− y with probability r.

(3) Repeat step (2) until ”convergence,” is achieved, for example, in 50 iterations.

Each of the four parameters of the 2nd-order GIM model is restricted to be between -2
and 2 to avoid the phase-transition phenomenon. In practice, this model assumes that a
texture will consist of a small number of gray levels, for example, 8 or less. Each parameter
determines a directionality; the larger the negative value of the parameter, the stronger the
direction.
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1.2 Gaussian Markov Random Field (Gmrf)

A Gmrf was first proposed by Besag as a model for analyzing crop yields in plant ecology.
This model has also been used to model natural textures. Let A = R; the corresponding F
and H functions of Gmrf in eq. (2) are defined as

F (xt) = (xt − μt)
2/2σ2, H(xt, xt:+r) = −θr(xt − μt)(xt:+r − μt:+r)/σ

2. (4)

Simple derivation gives the conditional density:

P (xt|Rt) =
1

2πσ2
exp

[
(xt − μt −

c∑
−c

θr(xt:+r − μt:+r))
2

/2σ2

]
. (5)

The distribution of X under the Gmrf model is a multivariate normal distribution [1]
with then block circulant covariance matrix B−1 given below:

f(x) =
|B|1/2

(2πσ2)MN/2
exp[−(x − μ)tB(x − μ)/2σ2]. (6)

The matrix B is an MN × MN block circulant matrix with M2 blocks of N2 circulant
matrices B′

ijs, defined as

B =

⎡
⎢⎢⎢⎢⎣

B11 B12 . . . B1M

B1M B11 . . . B1,M−1
...

...
...

...
B12 B13 . . . B11

⎤
⎥⎥⎥⎥⎦ . (7)

For the 2nd-order neighborhood,

B11 = circulant (1,−θ1, 0, . . . , 0,−θ1),

B12 = circulant (−θ2,−θ3, 0, . . . , 0,−θ4),

B1M = circulant (−θ2,−θ4, 0, . . . , 0,−θ3),

B1j = O for 2 < j < M .

The probability density (7) is valid only if B is positive definite, and it is identifiable
if no different parameter sets lead to the same eigenvalues of matrix B. Sampling a Gmrf
is nothing but sampling a multivariate normal distribution. However, in image analysis,
the B matrix is of order MN × MN , that is, 16384 × 16384, when M = N = 128, so the
traditional method for simulating the multivariate normal distribution based on Cholesky
decomposition is infeasible. An algorithm using the properties of block circulant matrices
is given below. Let y be an M × N array, and assign the first row of matrix B of order
MN ×MN to an M×N matrix A by means of A(i, j) = B(1, j+N×(i−1)). An algorithm
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for simulating Gmrf by adopting fast Fourier transform (FFT) is listed below. A synthesized
texture based on a Gmrf model with the parameters M = N = 128, μ = 128, σ = 64, and θ
= (0.07,−0.32, 0.07, 0.12) is shown in Figure 5(b).

Algorithm Gmrf

(1) Generate an M × N array Y with each element Y (i, j) ∼ N(0, σ2) being independent.

(2) Y ←− apply 2D FFT on Y.

(3) A ←− apply 2D inverse FFT on A (formed from the first row of matrix B).

(4) Y (u, v) ←− Y (u, v)/
√

A(u, v), 0 ≤ u < M, 0 ≤ v < N .

(5) Y ←− apply 2D inverse FFT on Y.

(6) Y + μ is a realization.

This model is nothing but a multivariate normal distribution with the covariance matrix
σ2B−1 being a large block-circulant matrix. The parameter θ affects the directionality, and
the parameter σ describes the spread of the gray values. It should be mentioned that the
parameter θ must make the matrix B positive definite. It seems that this model tends to
generate more textures as its order increases. However, the restriction of positive definiteness
of matrix B results in the problem of parameter selection.
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Figure 2: The relative sites and orders of neighbors of site t.
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