Test 1 for Spring/2010

11:10-13:00, April 23, 2010

- 1. (a) Find $x, y \in Z$ such that 17x + 257y = 1 and (b) Solve $17x \equiv 1 \mod 257$.
- **2.** Decrypt the ciphertext *XZVIVKQKTUKIZEDIFCKOPIQ* which was encrypted by an affine cipher $y \equiv 9x + 10 \mod 26$.
- 3. Decrypt ciphertext *cbxomkevj* encrypted by a Hill cipher

$$H = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 11 & 9 & 8 \end{bmatrix}$$

- **4.** Solve $x^2 \equiv 133 \pmod{143}$.
- 5. Find (a) the last two digits of 25^{244} and (b) the remainder of dividing 3^{12305} by 101.
- 6. Let p = 7, 11, or 19. Show that $a^{90} \equiv 1 \pmod{p}$ for all a with gcd(a, p) = 1.
- 7. A 3rd-order LFSR (linear feedback shift register) sequence starts 001110. Find the next four elements of the sequence.
- 8. Let $\phi(n)$ be the number of integers $1 \le a \le n$ such that gcd(a, n) = 1.
 - (a) Compute all of $\phi(d)$, where d|10, that is, d = 1, 2, 5, 10.
 - (b) Compute all of $\phi(d)$, where d|12.
 - (c) Find $\sum_{d|n} \phi(d)$ for n = 10, 12, 15.
 - (d) Show that $\sum_{d|n} \phi(d) = n, \ \forall \ n \in N = Z^+.$

- **9.** Let a and n > 1 be integers with gcd(a, n) = 1. The order of a mod n is defined as the smallest integer $r \ge 1$ such that $a^r \equiv 1 \pmod{n}$, denoted as $r = ord_n(a)$.
 - (a) Compute $ord_{10}(3)$ and $ord_{11}(3)$.
 - (b) Show that $r \leq \phi(n)$.
 - (c) If $m \equiv 0 \pmod{r}$, then $a^m \equiv 1 \pmod{n}$.
 - (d) Suppose $a^t \equiv 1 \pmod{n}$ and t = qr + s with $0 \le s < r$, then $a^s \equiv 1 \pmod{n}$.
 - (e) Show that $a^t \equiv 1 \pmod{n}$ iff $ord_n(a)|t$.
 - (f) Show that $ord_n(a)|\phi(n)$.
- 10. Suppose m_1, m_2, \dots, m_k are integers such that $gcd(m_i, m_j) = 1$ whenever $i \neq j$. Let a_1, a_2, \dots, a_k be integers. The following *algorithm* is guaranteed to construct a general form of solution for the Chinese Remainder Theorem.

```
for i = 1, 2, \dots, k
```

$$z_i = m_1 \cdots m_{i-1} m_{i+1} \cdots m_k$$

$$y_i \equiv z_i^{-1} \pmod{m_i}$$

endfor

Let $x = a_1 y_1 z_1 + a_2 y_2 z_2 + \dots + a_k y_k z_k$.

- (a) Show that $x \equiv a_i \pmod{m_i}$ for $1 \le i \le k$.
- (b) Solve the following simultaneous congruence problem.

$$x \equiv 2 \pmod{5}$$
$$x \equiv 5 \pmod{7}$$
$$x \equiv 8 \pmod{11}$$