Test 2 for Spring/2004

Due by May 7, 2004

- *1. Show that $x^2 \equiv y^2 \pmod{n}$ and $x \neq \pm y \pmod{n}$, then gcd(x+y,n) is a nontrivial factor of n.
- **2.** Prove that $2^n 1$ is prime implies that *n* is prime.
- **3.** Prove or disprove that $2^{2^n} 1$ is a prime number if *n* is prime.
- 4. Test if the following integers are prime or not. If it is not prime, factor it.
 - (a) 65537
 - **(b)** 632887
- 5. Let n = pq be the product of two primes.
 - (a) Suppose that $m \equiv 0 \pmod{\phi(n)}$. Show that if gcd(a, n) = 1, then $a^m \equiv 1 \pmod{p}$ and $a^m \equiv 1 \pmod{q}$.
 - (b) Suppose that $m \equiv 0 \pmod{\phi(n)}$ and let *a* be arbitrary (possibly $gcd(a, n) \neq 1$). Show that $a^{m+1} \equiv a \pmod{p}$ and $a^{m+1} \equiv a \pmod{q}$.
 - (c) Let e and d be encryption and decryption exponents for RSA with modulus n. Show that $a^{ed} \equiv a \pmod{n}$ for all a. This problem shows that we do not need to assume that gcd(a, n) = 1 in order to use RSA.
 - (d) If p and q are large, why is it likely that gcd(a, n) = 1 for a randomly chosen a?
- 6. Solve $3^x \equiv 24 \pmod{31}$
- 7. Let p = 3989 be a prime number.
 - (a) Show that $L_2(3925) = 2000$ and $L_2(1046) = 3000$.
 - (b) Evaluate $L_2(3925 \cdot 1046)$.
- *8. Use the Pohlig-Hellman algorithm to solve $11^x \equiv 2 \pmod{1201}$

(Hint) $1201 - 1 = 1200 = 2^4 \cdot 3 \cdot 5^2$