Chapter 5. Distributions of Functions of Random Variables

Distributions of Functions of Random Variables
Sampling Distribution Theory
Random Functions Associated with Normal Distributions
The Central Limit Theorem (CLT)
Approximations for Discrete Distributions
Limiting Moment-Generating Functions
Box-Muller Transformation
The Beta, Student’s t, and F Distributions

Distributions of Functions of Random Variables

- We discuss the distributions of functions of one random variable X and the distributions of functions of independently distributed random variables in this Chapter.

Example 1. Let X have the p.d.f. $f(x) = xe^{-x^2/2}$, $0 < x < \infty$. Then $Y = X^2$ has an exponential distribution with mean 2.

Example 2. The p.d.f. of X is $f(x) = \theta x^{\theta-1}$, $0 < x < 1$, $0 < \theta < \infty$. Then $Y = -2\theta \ln(X)$ has an exponential distribution with mean 2.

Example 3. Let X have a logistic distribution with p.d.f.

$$f(x) = \frac{e^{-x}}{(1 + e^{-x})^2}, \quad -\infty < x < \infty$$

Then $Y = \frac{1}{1+e^{-X}}$ has a $U(0,1)$ distribution.

Example 4. Let $X_1 \sim b(m, p)$ and $X_2 \sim b(n, p)$ be independent r.v.’s, then $Y = X_1 + X_2 \sim b(m+n, p)$.
Sampling Distribution Theory

♣ The collection of n independent and identically distributed random variables X_1, X_2, \ldots, X_n, is called a random sample of size n from the common distribution, e.g., $X_j \sim N(0, 1)$, $1 \leq j \leq n$.

♣ Some functions of a random sample, called statistics, are of interest, for examples, mean and variance. Sampling distribution theory refers to the derivation of distributions for functions of a random sample.

Theorem 1: Let X_1, X_2, \ldots, X_n be n independent r.v.'s with respective means $\{\mu_i\}$ and variances $\{\sigma_i^2\}$, then $Y = \sum_{i=1}^{n} a_i X_i$ has mean $\mu_Y = \sum_{i=1}^{n} a_i \mu_i$ and variance $\sigma_Y^2 = \sum_{i=1}^{n} a_i^2 \sigma_i^2$, respectively.

Theorem 2: Let X_1, X_2, \ldots, X_n be n independent r.v.'s with respective moment-generating functions $\{M_i(t)\}$, $1 \leq i \leq n$, then the moment-generating function of $Y = \sum_{i=1}^{n} a_i X_i$ is $M_Y(t) = \prod_{i=1}^{n} M_i(a_i t)$.

Corollary: If X_1, X_2, \ldots, X_n are observations of a random sample from a distribution with moment-generating function $M(t)$, then

(a) $M_Y(t) = \prod_{i=1}^{n} M(t)$, where $Y = \sum_{i=1}^{n} X_i$.

(b) $M_{\bar{X}}(t) = \prod_{i=1}^{n} M(t/n)$, where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

Example 1: Let $X_i \sim b(k, p)$ be a random sample of size n. Define $Y = \sum_{i=1}^{n} X_i$, then $M_Y(t) = \prod_{i=1}^{n} (q + pe^t)^k = (q + pe^t)^{kn}$.

Example 2: Let $X_i \sim Gamma(1, \theta)$ be a random sample of size n. Define $Y = \sum_{i=1}^{n} X_i$, then $M_Y(t) = \prod_{i=1}^{n} (1 - \theta t)^{-1} = 1/(1 - \theta t)^n$.

Exercises:
Random Functions Associated with Normal Distributions

In statistical applications, it is usually assumed that the population from which a sample is taken is $N(\mu, \sigma^2)$.

Theorem: Let X_1, X_2, \ldots, X_n be a random sample of size n from $N(\mu, \sigma^2)$. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then $\bar{X} \sim N(\mu, \sigma^2/n)$.

Theorem: Let $X_j \sim \chi^2(r_j)$, $1 \leq j \leq n$. If X_1, X_2, \ldots, X_n are independent, then $Y = \sum_{i=1}^{n} X_i \sim \chi^2(r_1 + r_2 + \ldots + r_n)$.

Theorem: Let Z_1, Z_2, \ldots, Z_n be a random sample of size n from $N(0, 1)$, then $W = Z_1^2 + Z_2^2 + \ldots + Z_n^2 \sim \chi^2(n)$.

Corollary: Let $\{X'_i\}$ be independent random variables from $N(\mu_i, \sigma_i^2)$, respectively, then $W = \sum_{i=1}^{n} (X_i - \mu_i)^2/\sigma_i^2$ is $\chi^2(n)$.

Theorem: Let $\{X'_i\}$ be observations of a random sample of size n from $N(\mu, \sigma^2)$. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, then

(a) \bar{X} and S^2 are independent.

(b) $\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^{n} (X_i - \bar{X})^2/\sigma^2 \sim \chi^2(n-1)$.

Example 1: Let X_1, X_2, X_3, X_4 be a random sample of size 4 from the normal distribution $N(76.4, 383)$. Then

(a) $U = \sum_{i=1}^{n} (X_i - 76.4)^2/383 \sim \chi^2(4)$, $P(0.711 \leq U \leq 7.779) = 0.90 - 0.05 = 0.85$.

(b) $W = \sum_{i=1}^{n} (X_i - \bar{X})^2/383 \sim \chi^2(3)$, $P(0.352 \leq W \leq 6.251) = 0.90 - 0.05 = 0.85$.

Theorem: Let $X_i \sim N(\mu_i, \sigma_i^2)$, $1 \leq i \leq n$, be independent. Define $Y = \sum_{i=1}^{n} a_i X_i$, then $Y \sim N(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2)$.
The Central Limit Theorem

Theorem: Let X_1, X_2, \ldots, X_n be a random sample of size n from $N(\mu, \sigma^2)$. Define $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then $\overline{X} \sim N(\mu, \sigma^2/n)$.

Theorem: Let \overline{X} be the mean of a random sample X_1, X_2, \ldots, X_n of size n from a distribution with mean μ and variance σ^2. Define $W_n = (\overline{X} - \mu)/(\sigma/\sqrt{n})$. Then

(a) $W_n = (\sum_{i=1}^{n} X_i - n\mu)/(\sqrt{n}\sigma)$

(b) $P(W_n \leq w) \approx \int_{-\infty}^{w} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \Phi(w)$.

(c) $W_n \sim N(0, 1)$ as $n \to \infty$.

Example 1: Let X_1, X_2, \ldots, X_n be a random sample of size n from a $\chi^2(1)$. Define $Y = \sum_{i=1}^{n} X_i$. Then

(a) $Y \sim \chi^2(n)$.

(b) $(Y - n)/\sqrt{2n} \approx N(0, 1)$.

Example 2: Let X_1, X_2, \ldots, X_n be a random sample of size n from a $U(0, 1)$. Define $Y = \sum_{i=1}^{n} X_i$. Then

$$(Y - 0.5n)/\sqrt{n/12} \approx N(0, 1).$$

Example 3: Let X_1, X_2, \ldots, X_n be a random sample of size n from a $Bernoulli(p)$. Define $Y = \sum_{i=1}^{n} X_i$. Then

(a) $Y \sim b(n, p)$.

(b) $(Y - np)/\sqrt{np(1 - p)} \approx N(0, 1)$.

Example 4: Let X_1, X_2, \ldots, X_n be a random sample of size n from an exponential distribution with mean θ. Define $Y = \sum_{i=1}^{n} X_i$. Then

(a) $Y \sim Gamma(n, \theta)$.

(b) $(Y - n\theta)/\sqrt{n\theta^2} \approx N(0, 1)$.
Approximations for Discrete Distributions

ymbol Use the normal distribution to approximate probabilities for certain discrete-type distributions.

Example 1: Let \(Y \sim b(10, 1/2) \). Then

\[
P(3 \leq Y < 6) = P(2.5 \leq Y \leq 5.5) = \Phi(0.316) - \Phi(-1.581) = 0.6240 - 0.0570 = 0.5670 \text{ (by Table II)}. \tag{1}
\]

Example 2: Let \(X_1, X_2, \ldots, X_n \) be a random sample of size \(n \) from a \(Poisson(\lambda) \). Define \(Y = \sum_{i=1}^{n} X_i \). Then

\[
(Y - n\lambda)/\sqrt{n\lambda} \approx N(0, 1).
\]

Example 3: Let \(Y \sim Poisson(\lambda = 20) \). Then

\[
P(16 < Y \leq 21) = P(16.5 \leq Y \leq 21.5) = P[(16.5 - 20)/\sqrt{20} \leq (Y - 20)/\sqrt{20} \leq (21.5 - 20)/\sqrt{20}]
= \Phi(0.335) - \Phi(-0.783) = 0.4142 \tag{2}
\]
Limiting Moment-Generating Functions

Theorem: If a sequence of moment-generating functions approaches a certain one, say, \(M(t) \), then the limit of the corresponding distribution must be the distribution corresponding to \(M(t) \).

Example 1: Let \(Y \sim b(50, 0.04) \) and let \(\lambda = np = 50 \times 0.04 = 2 \). Then

\[
P(Y \leq 1) = 0.400
\]

\[
P(Y \leq 1) \approx 0.406 \text{ by a Poisson approximation.}
\]
Simulating Continuous Distributions

Theorem 5.1-2 Let X have the cumulative distribution function (c.d.f.) $F(x)$ of the continuous type that is strictly increasing (i.e., $F(t) > F(s)$ if $t > s$) in on the support $a < x < b$. Then the r.v. $Y = F(X)$ has a uniform distribution $U(0, 1)$.

Proof Since $F(a) = 0$ and $F(b) = 1$. For $0 < y < 1$, we have

$$P(Y \leq y) = P(F(x) \leq y) = P(X \leq F^{-1}(y)) = F(F^{-1}(y)) = y$$

Thus, Y has a uniform distribution $U(0, 1)$.

- Simulating an exponential distribution $f(x) = \frac{1}{2}e^{-x/2}$, $0 < x < \infty$.

1. $Y = F(X) = 1 - e^{-X/2} \sim U(0, 1)$,
2. Generate a y from $U(0, 1)$ and let $y = 1 - e^{-x/2}$
3. Then $x = -2 \times \ln(1 - y + \epsilon)$,
4. Repeat steps (2) and (3) for the sample size you request.
Example 5.2-6: Box-Muller Transformation

Box-Muller Transformation Let \(\{X_1, X_2\} \) be a random sample from \(U(0,1) \), define

\[
Z_1 = \sqrt{-2 \ln X_1} \cos(2\pi X_2) \quad \text{and} \quad Z_2 = \sqrt{-2 \ln X_1} \sin(2\pi X_2).
\]

or, equivalently

\[
X_1 = \exp \left(-\frac{Z_1^2 + Z_2^2}{2} \right) = e^{-q/2} \quad \text{and} \quad X_2 = \frac{1}{2\pi} \arctan \left(\frac{Z_2}{Z_1} \right),
\]

which has the Jacobian

\[
J = \begin{vmatrix}
-z_1 e^{-q/2} & -z_2 e^{-q/2} \\
-\frac{z_2^2}{2\pi (z_1^2 + z_2^2)} & -\frac{z_1^2}{2\pi (z_1^2 + z_2^2)}
\end{vmatrix} = -\frac{1}{2\pi} e^{-q/2}.
\]

Since the joint p.d.f. of \(X_1 \) and \(X_2 \) is \(f(x_1, x_2) = 1, \ 0 < x_1, \ x_2 < 1 \), hence the joint p.d.f. of \(Z_1 \) and \(Z_2 \) is

\[
g(z_1, z_2) = |J_{x_1, x_2}| = \frac{1}{2\pi} \exp \left[-(z_1^2 + z_2^2)/2 \right], \quad -\infty < z_1, \ z_2 < \infty.
\]
The Beta, Student’s t, and F Distributions

Random variables whose space are intervals or a union of intervals are said to be of the continuous types. The p.d.f. of a r.v. X of continuous type is an integrable function \(f(x) \) satisfying

(a) \(f(x) > 0, \ x \in R \)

(b) \(\int_R f(x)dx = 1 \)

(c) The probability of the event \(X \in A \) is \(P(A) = \int_A f(x)dx \)

Beta \(f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, \ 0 < x < 1; \ \alpha, \beta > 0 \)

Student’s t Let \(Z \sim N(0,1) \) and \(V \sim \chi^2(r) \) be two independent random variables. Define \(T = Z/\sqrt{V/r} \). Then \(T \) has a t-distribution with p.d.f.

\[
f(t) = \frac{\Gamma((r+1)/2)}{\sqrt{\pi r} \Gamma(r/2)} \frac{1}{(1+t^2/r)^(r+1)/2}, \ \ -\infty < t < \infty
\]

F-distribution Let \(U \sim \chi^2(r_1) \) and \(V \sim \chi^2(r_2) \) be two independent random variables. Define \(W = (U/r_1)/(V/r_2) \). Then \(W \) has an F-distribution with p.d.f.

\[
f(w) = \frac{\Gamma((r_1+r_2)/2)(r_1/r_2)^{1/2}}{\Gamma(r_1/2)\Gamma(r_2/2)} \frac{w^{(r_1/2)-1}}{(1+w)^(r_1+r_2)/2}, \ \ 0 < w < \infty
\]
Proof of the Central Limit Theorem

Theorem: Let X_1, X_2, \ldots, X_n be a random sample of size n from $N(\mu, \sigma^2)$. Define $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then $\overline{X} \sim N(\mu, \sigma^2/n)$.

Theorem: Let \overline{X} be the mean of a random sample X_1, X_2, \ldots, X_n of size n from a distribution with mean μ and variance σ^2. Define $W_n = (\overline{X} - \mu) / (\sigma / \sqrt{n})$. Then

(a) $W_n = (\sum_{i=1}^{n} X_i - n\mu) / (\sqrt{n}\sigma)$

(b) $P(W_n \leq w) \approx \int_{-\infty}^{w} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \Phi(w)$.

(c) $W_n \sim N(0, 1)$ as $n \to \infty$.

(Proof)

$$E[\exp(tW_n)] = E\{\exp\left[\left(\frac{t}{\sqrt{n}\sigma}\right)(\sum_{i=1}^{n} X_i - n\mu)\right]\}$$

$$= E\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_1 - \mu}{\sigma}\right) + \cdots + \left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_n - \mu}{\sigma}\right)\right]\}$$

$$= E\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_1 - \mu}{\sigma}\right)\right]\} \cdots E\{\exp\left[\left(\frac{t}{\sqrt{n}}\right)\left(\frac{X_n - \mu}{\sigma}\right)\right]\},$$

which follows from the independence of X_1, X_2, \cdots, X_n. Then

$$E[\exp(tW_n)] = \left[M\left(\frac{t}{\sqrt{n}}\right)\right]^{n}, \quad -h < \frac{t}{\sqrt{n}} < h,$$

where

$$M(t) = E\{\exp\left[t\left(\frac{X_i - \mu}{\sigma}\right)\right]\}, \quad -h < t < h$$

is the common moment-generating function of each

$$Y_i = \frac{X_i - \mu}{\sigma}, \quad i = 1, 2, \ldots, n.$$

since $E(Y_i) = 0$ and $E(Y_i^2) = 1$, it must be that

$$M(0) = 1, \quad M'(0) = E\left(\frac{X_i - \mu}{\sigma}\right) = 0, \quad M''(0) = E\left[\left(\frac{X_i - \mu}{\sigma}\right)^2\right] = 1$$

Hence, using Taylor’s formula with a remainder, we know that there exists a number t_1 between 0 and t such that

$$M(t) = M(0) + M'(0)t + \frac{M''(t_1)t^2}{2} = 1 + \frac{M''(t_1)t^2}{2}. $$
Adding and subtracting $t^2/2$, we have

$$M(t) = 1 + \frac{t^2}{2} + \frac{1}{2}[M''(t_1) - 1]t^2.$$

Using this expression of $M(t)$ in $E[\exp(tW_n)]$, we can represent the moment-generating function of W_n by

$$E[\exp(tW_n)] = \left\{ 1 + \frac{1}{2} \left(\frac{t}{\sqrt{n}} \right)^2 + \frac{1}{2}[M''(t_1) - 1] \left(\frac{t}{\sqrt{n}} \right)^2 \right\}^n$$

$$= \left\{ 1 + \frac{t^2}{2n} + \frac{[M''(t_1) - 1]^2}{2n} \right\}^n, \quad -\sqrt{n}h < t < \sqrt{n}h,$$

where now t_1 is between 0 and t/\sqrt{n}. Since $M''(t)$ is continuous at $t = 0$ and $t_1 \to 0$ as $n \to \infty$, we have

$$\lim_{n \to \infty} [M''(t_1) - 1] = 1 - 1 = 0$$

Thus,

$$\lim_{n \to \infty} E[\exp(tW_n)] = \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} + \frac{[M''(t_1) - 1]^2}{2n} \right\}^n$$

$$= \lim_{n \to \infty} \left\{ 1 + \frac{t^2}{2n} \right\}^n = e^{t^2/2}$$

for all real t. We know that $e^{t^2/2}$ is the moment-generating function of the standard normal distribution, $N(0, 1)$. Therefore, the limiting distribution of

$$W_n = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} = \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma^2} \rightarrow N(0, 1) \quad \text{as} \quad n \to \infty.$$
Order Statistics

If \(X_1, X_2, \cdots, X_n\) are observations of a random sample of size \(n\) from a continuous-type distribution whose p.d.f. is \(f(x)\) and c.d.f. is \(F(x)\), and let the random variables

\[Y_1 < Y_2 < \cdots < Y_n \quad \text{or} \quad X(1) < X(2) < \cdots < X(n) \]

denote the order statistics of this sample, that is,

\[Y_1 \text{ is the smallest of } X_1, X_2, \cdots, X_n \]

\[: \]

\[Y_r \text{ is the } r-th \text{ smallest of } X_1, X_2, \cdots, X_n \]

\[: \]

\[Y_n \text{ is the largest of } X_1, X_2, \cdots, X_n \]

Let \(f\) be defined in \((a, b)\) so that \(F'(x) = f(x)\), for \(x \in (a, b)\), \(0 < F(x) < 1\), \(x \in (a, b)\) and \(F(a) = 0\), \(F(b) = 1\). Then we have

\[G_r(y) = P(Y_r \leq y) = \sum_{k=r}^{n} \binom{n}{k} [F(y)]^k [1 - F(y)]^{n-k} \]

\[= \sum_{k=r}^{n-1} \binom{n}{k} [F(y)]^k [1 - F(y)]^{n-k} + [F(y)]^n \]

Thus the p.d.f. of \(Y_r\) could be derived as

\[g_r(y) = G_r'(y) = \frac{n!}{(r-1)!(n-r)!} [F(y)]^{r-1} [1 - F(y)]^{n-r} f(y), \quad a < y < b \]

In particular,

\[g_1(y) = n[1 - F(y)]^{n-1} f(y), \quad a < y < b \]

\[g_n(y) = n[F(y)]^{n-1} f(y), \quad a < y < b \]

(1) If \(X_i\) has a U(0,1) distribution, \(E(Y_r) = \frac{r}{n+1}\).

(2) If \(X_j\) has an exponential distribution with mean 2, \(g_1(y) = ne^{-ny}, \quad y > 0\) and \(E(Y_1) = \frac{1}{n}\).