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O The Joint Probability Mass Functions and p.d.f.

e Let X and Y be two discrete random variables and let R be the corresponding space of X
and Y. The joint p.m.f. of X =z and Y = y, denoted by f(z,y) = P(X =z,Y =y),
has the following properties:

(a) 0< f(z,y) <1for (z,y) € R.
(b) E(m,y)GR f(l‘7 y) = 17
(C) P(A) = Z(m,y)GA f(xa y)’ where A C R.

o The marginal p.m.f. of X is defined as fx(z) =X, f(z,y) , for each 2z € R,.
e The marginal p.m.f. of Y is defined as fy(y) =3, f(z,y) , for each y € R,,.

e The random variables X and Y are independent iff (if and only if) f(x,y) = fx(x)fy(y)
for x € R;, y € R,.

Example 1. f(z,y) = (xr +y)/21, =z = 1,2,3; y = 1,2, then X and Y are not
independent.

Example 2. f(x,y) = (zy%)/30, 2=1,2,3; y=1,2, then X and Y are independent.



The Joint Probability Density Functions

e Let X and Y be two continuous random variables and let R be the corresponding space
of X and Y. The joint p.d.f. of X = z and Y = y, denoted by f(x,y) = P(X =
x,Y = y), has the following properties:

(a) f(z,y) >0 for —oo <z,y< 0.
(b) J2 J25 flz,y)dedy = 1.
(c) P(A)=[[sf(x,y), where ACR.

e The marginal p.d.f. of X is defined as fx(z) = [%3 f(x,y)dy, for z € R,.
e The marginal p.d.f. of YV is defined as fy(y) = [°5 f(z,y)dz, for y € R,

e The random variables X and Y are independent iff (if and only if) f(x,y) = fx(x)fy(y)
for v € R,, y € R,.

Example 3. Let X and Y have the joint p.d.f.

3
flx,y) ==2*(1-ly|]), —l<az<l —-1l<y<l.
2

Let A={(z,y)[0 <z <1, 0<y<uz}. Then

P(A) = J) Ji 3021 —y)dyde = [} 302 [y — %] do

Example 4. Let X and Y have the joint p.d.f.
flz,y)=2, 0<z<y<L

Thus R = {(z,y)|0 <2 <y <1}. Let A= {(z,9)|0<z <3, 0<y <1} Then

P(A) = Po<x <} o<v<i) = P0<X<Y, 0<Y <Y

= 01/2 J2dxdy =

1
4

Furthermore,

Fx( /2dy-2(1—x) 0<z<1 and fy(y /2dm-2y, 0<z<l.



Independent Random Variables

The random variables X and Y are independent iff their joint probability function is the
product of their marginal distribution functions, that is,

f(xvy):fX(x)fY(y)v v z,y

More generally, the random variables X, X5, ---, X, are mutually independent iff their
joint probability function is the product of their marginal probability (density) functions,
ie.,

f(xhx??' ’ '7xn) = le(xl)fXg(xQ) e 'an(fn), V 1,29, -, 1,

(1) Let X; and X5 be independent Poisson random variables with respective means \; = 2
and Ay = 3. Then

(a) P(X, =3,X,=05)=P(X; =3)P(X, =5) = % x 2.

3! 5!
(b) P(Xi + X, =1) = P(X; = 1)P(Xy = 0) + P(X; = 0)P(Xy = 1) = <=2
6_330 6_220 6_331
+
0! 0! 1!

(2) Let X7 ~ b(3,0.8) and Xy ~ b(5,0.7) be independent binomial random variables.
Then

) P(X; = 2,X, = 4) = P(X; = 2)P(X, = 4) = (2 ) (0.8)2(1 — 0.8)2

) P(X; +Xo = 7) = P(X; = 2)P(Xy = 5) + P(X; = 3)P(Xy, = 4) =
( g ) 2(1-0.8)>72 x ( g ) (0.7)5(1 = 0.7)>% + ( g ) (0.8)3(1 —0.8)373 x
<i Y41 —0.7)>

(3) Let X; and X5 be two independent randome variables having the same exponential
distribution with p.d.f. f(z) =2e7%*, 0 < z < co. Then

(a) E[X1] = E[X,] = 0.5 and E[(X; — 0.5)%] = E[(X, — 0.5)%] = 0.25.

-0 1.2
(b) P(0.5 < X; < 1.0, 0.7< X5 <1.2)= ( 2€2xdx) y ( 2€2xdx>
0.5 0.7
(¢) E[X1(Xy —0.5)%] = E[X1]E[(Xy — 0.5)%] = 0.5 x 0.25 = 0.125.



Covariance and Correlation Coefficient

For artibrary random variables X and Y, and constants a and b, we have
ElaX +bY]| = aFE[X] + bE[Y]

Proof: We'll show for the continuous case, the discrete case can be similarly proved.

ElaX +0Y] = /O:O /O:O(a:l: + by) f(z,y)dzxdy
= /O:O /O:oaxf(x, y)dzdy + /o:o /O:Obyf(x, y)dxdy

= /Ooax [/Oof(x,y)dy} d$+/o:oby [/Oof(xay)dx] dy

— 00 —00 —0o0

= a/o:oxfx(:z:)dx + b/o:oyfy(y)dy

= aF[X]+bE[Y]
Similarly,
i=1 i=1
Furthermore,

EIXY] = / / xy f(x,y)dzdy
[Example] Let f(z,y) =3(x+y), 0<z <1, 0<y<2 and f(z,y) = 0 elsewhere.

12 12 9
E[XY] :/ / xy f(z,y)dydz :/ / zy=(x + y)dydr = =
0o Jo oJo "3 3

Let X and Y be independent random variables, then

EOY) = [ [ ayte@) e dedy = | [~ apx@o]| [~ upeidy| = BGO-B)

— 00 —

(e 9]

The covariance between r.v.’s X and Y is defined as

Cov(X,Y) = El(X =) (V=) = [ [ (@=pu)y=pv) (@ y)dyda = BCXY)=puxpy

If X and Y are independent r.v.s, then Cov(X,Y) = 0.

The correlation coefficient is defined by p(X,Y) = CouXY)

oX0Yy



Expectation and Covariance Matrix

Let X1, X5, ..., X,, berandom variables such that the expectation, variance, and covariance
are defined as follows.

1 = E(X;), of =Var(X;) = E(X; — ;)%

Cov(X;, X;) = E[(X;s — ) (X — ;)] = pijoio;

Suppose that X = [X7, X5, ..., X,]" is a random vector, then the expected mean vector
and covariance matrix of X is defined as

E(X) - [Mla”?a"'?:u’n]tzu

Cov(X) = E[(X - p)(X - )]

= [E((Xi = p)(X; = 15))]

Theorem 1: Let X;, Xs,..., X, be nindependent r.v.’s with respective means {y;} and

: 2 _ n _ n : 2
variances {07}, then Y = Y" | a;X; has mean py = >, a;u; and variance oy =

" a?a?, respectively.
Theorem 2: Let X, X5, ..., X, benindependent r.v.’s with respective moment-generating
functions {M;(t)}, 1 <i < n, then the moment-generating function of Y = 7 | 4, X;
is My(t) = H?:l Mz(azt)



Multivariate (Normal) Distributions

¢ (Gaussian) Normal Distribution: X ~ N (u,o?)

1
fx(z) = f(z) = exp” W20 por — 00 < < 00

V2mo?

mean and variance : E(X)=u, Var(X)= o>

¢ (Gaussian) Normal Distribution: X ~ N(u,C)

1
Pxx) = 1) = Gyinaeoy

e~ (x—wWCT (x—u)/2 for x € R?

mean vector and covariance matriz : E(X)=u, Cov(X)=C

¢ Simulate X ~ N(u, C)
(1) C = LL*, where L is lower-A.
(2) Generate y ~ N(0,1).
(3) x=u+Lxy
(4) Repeat Steps (2)and(3) M times.

% Simulate N([1 3]’, [4,2; 2,5])

yA

n=30;

X1=random(’normal’,0,1,n,1);
X2=random(’normal’,0,1,n,1);

Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];
Yhat=mean(Y) 7% estimated mean vector
Chat=cov(Y) % estimated covariance matrix

% Z=[X1, X2];



Plot a 2D standard Gaussian Distribution

x=-3.6:0.3:3.6;

y=x’;

X=ones(length(y),1)*x;

Y=y*ones(1,length(x));
Z=exp(-(X."2+Y."2) /2+eps) / (2%pi);

mesh(Z) ;

title(Cf(x,y)= (1/2\pi)*exp[-(x"2+y~2)/2.0]")

f(x.y)= (L2n)exp[-(C+y2)2.0]

0.2

0.15




Some Practical Examples

(1) Let X3, X5, and X3 be independent r.v.s from a geometric distribution with p.d.f.

=0 e=12-

p(X1+X2+X3:5) - 3P(X1:3,X2:1,X3:1)+3P(X1:2,X2:2,X3:

81
512

(c¢) Let Y = maz{X;, X5, X3}, then

P(Y <2) = P(X, <2)P(Xs < 2)P(X; < ?2)

(2) Let the random variables X and Y have the joint density function
flz,y) = xe ™" >0, y>0

f(z,y) = 0 elsewhere

Then

(a) fx(z) = [Cxe ™ "dr=e" >0, pux=1, o% = 1.

(b) fy(y) = m, y > 0; py =lim, . [In(1+y) — 1] does not exist.

(¢) X and Y are not independent since f(x,y) # fx(x)fy(y).



PX+Y <1) = [} ( P xe"”y"”dy) dx
=l e — e 2y
= [le®de—et x [} el2H g

= 1—el—e ' x(fyedt)

(3) Let (X,Y) be uniformly distributed over the unit circle {(x,y) : (z* + y?) < 1}. Tts
joint p.d.f is given by
fley) = 5, 2 +y* <1

T

f(z,y) = 0 elsewhere

-~ U
S
T+
N
AN
i
I
1
3 =

)
)
¢) P(X=Y)=0.
)
)
)

independent.
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Stochastic Process

Definition: A Bernoulli trials process is a sequence of independent and identically dis-
tributed (izd) Bernoulli r.v.’s X, Xy, .-+, X,,. It is the mathematical model of n
repetitions of an experiment under identical conditions, with each experiment pro-
ducing only two outcomes called success/failure, head/tail, etc. Two examples are
described below.

(i) Quality control: As items come off a production line, they are inspected for defects. When the ith
item inspected is defective, we record X; = 1 and write down X; = 0 otherwise.

(ii) Clinical trials: Patients with a disease are given a drug. If the ith patient recovers, we set
X; =1 and set X; = 0 otherwise. are mutually independent.

A Bernoulli trials process is a sequence of independent and identically distributed (iid)
random variables Xy, Xo,---, X,,, where each X; takes on only one of two values, 0
or 1. The number p = P(X; = 1) is called the probability of success, and the number
g =1—p= P(X; = 0) is called the probability of failure. The sum T = X; is

i=1
called the number of successes in n Bernoulli trials, where T' ~ b(n, p) has a binomial
distribution.

Definition: {X(¢), ¢t > 0} is a Poisson process with intensity A > 0 if

(i) For s > 0 and ¢ > 0, the random variable X (s + t) — X(s) has the Poisson
distribution with parameter \t, i.e.,

-\t k
p[X(Hs)—X(s):k]:%, k=0,1,2,-

and

(ii) For any time points 0 = tg < t; < --- < t,,, the random variables
X(t1) = X(to), X(t2) = X(t1), -+, X(tn) = X(tu-1)
are mutually independent.

The Poisson process is an example of a stochastic process, a collection of random
variables indexed by the time parameter t.



