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Chapter 4. Multivariate Distributions

♣ Joint p.m.f. (p.d.f.)

♣ Independent Random Variables

♣ Covariance and Correlation Coefficient

♣ Expectation and Covariance Matrix

♣ Multivariate (Normal) Distributions

♣ Matlab Codes for Multivariate (Normal) Distributions

♣ Some Practical Examples

� The Joint Probability Mass Functions and p.d.f.

• Let X and Y be two discrete random variables and let R be the corresponding space of X
and Y . The joint p.m.f. of X = x and Y = y, denoted by f(x, y) = P (X = x, Y = y),
has the following properties:

(a) 0 ≤ f(x, y) ≤ 1 for (x, y) ∈ R.

(b)
∑

(x,y)∈R f(x, y) = 1,

(c) P (A) =
∑

(x,y)∈A f(x, y), where A ⊂ R.

• The marginal p.m.f. of X is defined as fX(x) =
∑

y f(x, y) , for each x ∈ Rx.

• The marginal p.m.f. of Y is defined as fY (y) =
∑

x f(x, y) , for each y ∈ Ry.

• The random variables X and Y are independent iff (if and only if) f(x, y) ≡ fX(x)fY (y)
for x ∈ Rx, y ∈ Ry.

Example 1. f(x, y) = (x + y)/21, x = 1, 2, 3; y = 1, 2, then X and Y are not
independent.

Example 2. f(x, y) = (xy2)/30, x = 1, 2, 3; y = 1, 2, then X and Y are independent.
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The Joint Probability Density Functions

• Let X and Y be two continuous random variables and let R be the corresponding space
of X and Y . The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P (X =
x, Y = y), has the following properties:

(a) f(x, y) ≥ 0 for −∞ < x, y < ∞.

(b)
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

(c) P (A) =
∫ ∫

A f(x, y), where A ⊂ R.

• The marginal p.d.f. of X is defined as fX(x) =
∫∞
−∞ f(x, y)dy, for x ∈ Rx.

• The marginal p.d.f. of Y is defined as fY (y) =
∫∞
−∞ f(x, y)dx, for y ∈ Ry.

• The random variables X and Y are independent iff (if and only if) f(x, y) ≡ fX(x)fY (y)
for x ∈ Rx, y ∈ Ry.

Example 3. Let X and Y have the joint p.d.f.

f(x, y) =
3

2
x2(1 − |y|), − 1 < x < 1. − 1 < y < 1.

Let A = {(x, y)|0 < x < 1, 0 < y < x}. Then

P (A) =
∫ 1
0

∫ x
0

3
2
x2(1 − y)dydx =

∫ 1
0

3
2
x2
[
y − y2

2

]x
0
dx

=
∫ 1
0

3
2

[
x3 − x4

2

]
dx = 3

2

[
x4

4
− x5

10

]1
0

= 9
40

Example 4. Let X and Y have the joint p.d.f.

f(x, y) = 2, 0 ≤ x ≤ y ≤ 1.

Thus R = {(x, y)|0 ≤ x ≤ y ≤ 1}. Let A = {(x, y)|0 ≤ x ≤ 1
2
, 0 ≤ y ≤ 1

2
}. Then

P (A) = P
(
0 ≤ X ≤ 1

2
, 0 ≤ Y ≤ 1

2

)
= P

(
0 ≤ X ≤ Y, 0 ≤ Y ≤ 1

2

)

=
∫ 1/2
0

∫ y
0 2dxdy = 1

4

Furthermore,

fX(x) =
∫ 1

x
2dy = 2(1 − x), 0 ≤ x ≤ 1 and fY (y) =

∫ y

0
2dx = 2y, 0 ≤ x ≤ 1.
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Independent Random Variables

The random variables X and Y are independent iff their joint probability function is the
product of their marginal distribution functions, that is,

f(x, y) = fX(x)fY (y), ∀ x, y

More generally, the random variables X1, X2, · · · , Xn are mutually independent iff their
joint probability function is the product of their marginal probability (density) functions,
i.e.,

f(x1, x2, · · · , xn) = fX1(x1)fX2(x2) · · · fXn(xn), ∀ x1, x2, · · · , xn

(1) Let X1 and X2 be independent Poisson random variables with respective means λ1 = 2
and λ2 = 3. Then

(a) P (X1 = 3, X2 = 5) = P (X1 = 3)P (X2 = 5) = e−223

3!
× e−335

5!
.

(b) P (X1 + X2 = 1) = P (X1 = 1)P (X2 = 0) + P (X1 = 0)P (X2 = 1) = e−221

1!
×

e−330

0!
+ e−220

0!
× e−331

1!
.

(2) Let X1 ∼ b(3, 0.8) and X2 ∼ b(5, 0.7) be independent binomial random variables.
Then

(a) P (X1 = 2, X2 = 4) = P (X1 = 2)P (X2 = 4) =

(
3
2

)
(0.8)2(1 − 0.8)3−2 ×(

5
4

)
(0.7)4(1 − 0.7)5−4

(b) P (X1 + X2 = 7) = P (X1 = 2)P (X2 = 5) + P (X1 = 3)P (X2 = 4) =(
3
2

)
(0.8)2(1− 0.8)3−2 ×

(
5
5

)
(0.7)5(1− 0.7)5−5 +

(
3
3

)
(0.8)3(1− 0.8)3−3 ×(

5
4

)
(0.7)4(1 − 0.7)5−4

(3) Let X1 and X2 be two independent randome variables having the same exponential
distribution with p.d.f. f(x) = 2e−2x, 0 < x < ∞. Then

(a) E[X1] = E[X2] = 0.5 and E[(X1 − 0.5)2] = E[(X2 − 0.5)2] = 0.25.

(b) P (0.5 < X1 < 1.0, 0.7 < X2 < 1.2) =
(∫ 1.0

0.5
2e−2xdx

)
×
(∫ 1.2

0.7
2e−2xdx

)

(c) E[X1(X2 − 0.5)2] = E[X1]E[(X2 − 0.5)2] = 0.5 × 0.25 = 0.125.
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Covariance and Correlation Coefficient

For artibrary random variables X and Y , and constants a and b, we have

E[aX + bY ] = aE[X] + bE[Y ]

Proof: We’ll show for the continuous case, the discrete case can be similarly proved.

E[aX + bY ] =
∫ ∞

−∞

∫ ∞

−∞
(ax + by)f(x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
axf(x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
byf(x, y)dxdy

=
∫ ∞

−∞
ax
[∫ ∞

−∞
f(x, y)dy

]
dx +

∫ ∞

−∞
by
[∫ ∞

−∞
f(x, y)dx

]
dy

= a
∫ ∞

−∞
xfX(x)dx + b

∫ ∞

−∞
yfY (y)dy

= aE[X] + bE[Y ]

Similarly,

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

Furthermore,

E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy

[Example] Let f(x, y) = 1
3
(x + y), 0 < x < 1, 0 < y < 2, and f(x, y) = 0 elsewhere.

E[XY ] =
∫ 1

0

∫ 2

0
xyf(x, y)dydx =

∫ 1

0

∫ 2

0
xy

1

3
(x + y)dydx =

2

3

• Let X and Y be independent random variables, then

E(XY ) =
∫ ∞

−∞

∫ ∞

−∞
xyfX(x)fY (y)dxdy =

[∫ ∞

−∞
xfX(x)dx

]
·
[∫ ∞

−∞
yfY (y)dy

]
= E(X)·E(Y )

• The covariance between r.v.’s X and Y is defined as

Cov(X, Y ) = E[(X−μX)(Y −μY )] =
∫ ∞

−∞

∫ ∞

−∞
(x−μX)(y−μY )f(x, y)dydx = E(XY )−μXμY

• If X and Y are independent r.v.s, then Cov(X, Y ) = 0.

• The correlation coefficient is defined by ρ(X, Y ) = Cov(X,Y )
σXσY
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Expectation and Covariance Matrix

Let X1, X2, . . . , Xn be random variables such that the expectation, variance, and covariance
are defined as follows.

μj = E(Xj), σ2
j = V ar(Xj) = E[(Xj − μj)

2]

Cov(Xi, Xj) = E[(Xi − μi)(Xj − μj)] = ρijσiσj

Suppose that X = [X1, X2, . . . , Xn]t is a random vector, then the expected mean vector
and covariance matrix of X is defined as

E(X) = [μ1, μ2, . . . , μn]
t = μ

Cov(X) = E[(X − μ)(X − μ)t]

= [E((Xi − μi)(Xj − μj))]

Theorem 1: Let X1, X2, . . . , Xn be n independent r.v.’s with respective means {μi} and
variances {σ2

i }, then Y =
∑n

i=1 aiXi has mean μY =
∑n

i=1 aiμi and variance σ2
Y =∑n

i=1 a2
i σ

2
i , respectively.

Theorem 2: Let X1, X2, . . . , Xn be n independent r.v.’s with respective moment-generating
functions {Mi(t)}, 1 ≤ i ≤ n, then the moment-generating function of Y =

∑n
i=1 aiXi

is MY (t) =
∏n

i=1 Mi(ait).
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Multivariate (Normal) Distributions

♦ (Gaussian) Normal Distribution: X ∼ N(u, σ2)

fX(x) = f(x) =
1√

2πσ2
exp−(x−u)2/2σ2

for −∞ < x < ∞

mean and variance : E(X) = u, V ar(X) = σ2

♦ (Gaussian) Normal Distribution: X ∼ N(u, C)

fX(x) = f(x) =
1

(2π)d/2[det(C)]1/2
e−(x−u)tC−1(x−u)/2 for x ∈ Rd

mean vector and covariance matrix : E(X) = u, Cov(X) = C

♦ Simulate X ∼ N(u, C)

(1) C = LLt, where L is lower-Δ.

(2) Generate y ∼ N(0, I).

(3) x = u + L ∗ y

(4) Repeat Steps (2)and(3) M times.

% Simulate N([1 3]’, [4,2; 2,5])

%

n=30;

X1=random(’normal’,0,1,n,1);

X2=random(’normal’,0,1,n,1);

Y=[ones(n,1), 3*ones(n,1)]+[X1,X2]*[2 1; 0, 2];

Yhat=mean(Y) % estimated mean vector

Chat=cov(Y) % estimated covariance matrix

% Z=[X1, X2];



7

Plot a 2D standard Gaussian Distribution

x=-3.6:0.3:3.6;

y=x’;

X=ones(length(y),1)*x;

Y=y*ones(1,length(x));

Z=exp(-(X.^2+Y.^2)/2+eps)/(2*pi);

mesh(Z);

title(’f(x,y)= (1/2\pi)*exp[-(x^2+y^2)/2.0]’)
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f(x,y)= (1/2π)*exp[−(x2+y2)/2.0]
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Some Practical Examples

(1) Let X1, X2, and X3 be independent r.v.s from a geometric distribution with p.d.f.

f(x) =
(

3

4

)(
1

4

)x−1

, x = 1, 2, · · ·

Then

(a)

P (X1 = 1, X2 = 3, X3 = 1) = P (X1 = 1)P (X2 = 3)P (X3 = 1) = f(1)f(3)f(1)

=
(

3
4

)3 (
1
4

)2
= 27

1024

(b)

P (X1 + X2 + X3 = 5) = 3P (X1 = 3, X2 = 1, X3 = 1) + 3P (X1 = 2, X2 = 2, X3 = 1)

= 81
512

(c) Let Y = max{X1, X2, X3}, then

P (Y ≤ 2) = P (X1 ≤ 2)P (X2 ≤ 2)P (X3 ≤ 2)

=
(

3
4

+ 3
4
· 1

4

)3

=
(

15
16

)3

(2) Let the random variables X and Y have the joint density function

f(x, y) = xe−xy−x, x > 0, y > 0

f(x, y) = 0 elsewhere

Then

(a) fX(x) =
∫∞
0 xe−xy−xdx = e−x, x > 0; μX = 1, σ2

X = 1.

(b) fY (y) = 1
(1+y)2

, y > 0; μY = limy→∞[ln(1 + y) − 1] does not exist.

(c) X and Y are not independent since f(x, y) �= fX(x)fY (y).
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(d)

P (X + Y ≤ 1) =
∫ 1
0

(∫ 1−x
0 xe−xy−xdy

)
dx

=
∫ 1
0 (e−x − e−2x+x2

)dx

=
∫ 1
0 e−xdx − e−1 × [

∫ 1
0 e1−2x+x2

dx]

= 1 − e−1 − e−1 × (
∫ 1
0 et2dt)

(3) Let (X, Y ) be uniformly distributed over the unit circle {(x, y) : (x2 + y2) ≤ 1}. Its
joint p.d.f is given by

f(x, y) = 1
π
, x2 + y2 ≤ 1

f(x, y) = 0 elsewhere

(a) P (X2 + Y 2 ≤ 1
4
) = π

4
· 1

π
.

(b) {(x, y) : (x2 + y2) ≤ 1, x > y} is a semicircle, so P (X > Y ) = 1
2
.

(c) P (X = Y ) = 0.

(d) {(x, y) : (x2 + y2) ≤ 1, x < 2y} is a semicircle, so P (Y < 2X) = 1
2
.

(e) Let R = X2 + Y 2, then FR(r) = P (R ≤ r) = r if r < 1, and FR(r) = 1 if r ≥ 1.

(f) Compute fX(x) and fY (y) and show that Cov(X, Y ) = 0 but X and Y are not
independent.
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Stochastic Process

Definition: A Bernoulli trials process is a sequence of independent and identically dis-
tributed (iid) Bernoulli r.v.’s X1, X2, · · · , Xn. It is the mathematical model of n
repetitions of an experiment under identical conditions, with each experiment pro-
ducing only two outcomes called success/failure, head/tail, etc. Two examples are
described below.

(i) Quality control: As items come off a production line, they are inspected for defects. When the ith
item inspected is defective, we record Xi = 1 and write down Xi = 0 otherwise.

(ii) Clinical trials: Patients with a disease are given a drug. If the ith patient recovers, we set
Xi = 1 and set Xi = 0 otherwise. are mutually independent.

A Bernoulli trials process is a sequence of independent and identically distributed (iid)
random variables X1, X2, · · · , Xn, where each Xi takes on only one of two values, 0
or 1. The number p = P (Xi = 1) is called the probability of success, and the number

q = 1 − p = P (Xi = 0) is called the probability of failure. The sum T =
n∑

i=1

Xi is

called the number of successes in n Bernoulli trials, where T ∼ b(n, p) has a binomial
distribution.

Definition: {X(t), t ≥ 0} is a Poisson process with intensity λ > 0 if

(i) For s ≥ 0 and t > 0, the random variable X(s + t) − X(s) has the Poisson
distribution with parameter λt, i.e.,

P [X(t + s) − X(s) = k] =
e−λt(λt)k

k!
, k = 0, 1, 2, · · ·

and

(ii) For any time points 0 = t0 < t1 < · · · < tn, the random variables

X(t1) − X(t0), X(t2) − X(t1), · · · , X(tn) − X(tn−1)

are mutually independent.

The Poisson process is an example of a stochastic process, a collection of random
variables indexed by the time parameter t.


