Chapter 3. Continuous Distributions

& Continuous-Type Data
& Exploratory Data Analysis
& Random Variables of The Continuous Type

& Uniform, Exponential, Gamma, Chi-Square, Normal, Beta,
Student-t, and F Distributions

& Gamma, Exponential, and Chi-Square Distributions
& The Normal Distribution
& The Moment-Generating Functions

& Exercises for I'(a, 0), Expoenetial, x*(r), N(u, o%)

O Continuous-Type Data Many experiments or observations of random phenomena do not
have integers as outcomes, but instead are the measurements selected from an interval of
numbers. For example, you could find the length of time that it takes when waiting in line
to buy train tickets. Conceptually, if the measurements could come from an interval of
possible outcomes, we call them data from a continuous-type population or continuous-type
data.

Example One characteristic of a car’s storage console that is checked by the manufacturer
is the time in seconds that it takes for the lower storage compartment door to open
completely. A random sample of size n = 5 yielded the following times:

1.1 09 14 1.1 1.0

Find the sample mean 7 and sample variance s2.



Exploratory Data Analysis (1/2)

To explore the other characteristics of an unknown distribution, we need to take a sample
of n observations, x1, xo, - - -, x,, from that distribution and often need to order them from
the smallest to the largest. One convenient way of doing this is to use a stem-and-leaf

display started by John W. Tukey (1977).

¢ stem-and-leaf display

¢ order statistics (of the sample)

& 25th percentile, 0.25 quantile, 1st quartile

¢ minimum, mean, median, maximum, range

¢ 1st quartile, 2nd quartile (median), 3rd quartile (gs)

¢ five-number summary (minimum, ¢, ¢2, g3, maximum)

¢ box-and-whisker diagram, outliers

O Graphical Comparisons of Data Sets

¢ A plot of Taiwan Stock Exchange Indices
¢ A plot of Dow Jones Industrial Indices

& A plot of Nasdaq Indices



Exploratory Data Analysis (2/2)

(1) There is a list of scores on a statistics examination provided by Professor John W.
Tukey (1977).

93 77 67 T2 52 83 66 84 59 63
7 97 84 73 81 42 61 51 91 87
34 54 71 47 79 70 65 57 90 83
58 69 82 76 71 60 38 81 74 69
68 76 8 58 45 T3 75 42 93 65

(a) List the order statistics of these 50 scores.

(b) Find sample mean and variance for these scores.
(c) Find the 25th, 75th percentiles, and the median.
(

d

)
)
c)
)
(e) How may students were flunk?
)
)
)
)
)

Draw a box-and-whisker diagram, including a five-number summary.

(f) How may students receiving scores over 90, inclusive?
(g) Are there outliers? Explain it.
(h

(i) Find the histogram of relative frequency.

Find the tabulation of these 50 scores.

(j) Find a (ordered) stem-leaf display of these scores.

(a) The order statistics of data in (1) are shown below.
34 38 42 42 45 47 51 52 H4 57
58 58 59 60 61 63 65 65 66 67
68 69 69 70 71 T1 72 73 73 T4
7 75 76 76 77 79 81 81 82 83
83 84 84 8 87 90 91 93 93 97

(d) Box-and-Whisker Plot.

box—whisker plot

[=4.58.5,71.81.5,97]

ao s0 so 7o 20 S0 100



Random Variables of The Continuous Type

& Random variables whose space are intervals or a union of intervals are said to be of the
continuous types. The p.d.f. of a r.v. X of continuous type is an integrable function
f(z) satisfying

(a) f(x)>0, x€eR
(b) Jp f(z)dr =1

(c) The probability of the event X € A is P(A) = [, f(z)dx

O The cumulative distribution function (cdf) is defined as F'(z) = P(X < z) = [*_ f(t)dt.

O The expectation is defined as p = E[X]| = [ xf(z)dz

— 00

O The variance is defined as 0 = Var(X) = [%_(z — p)?f(z)dx

—0o0

O The moment generating function is defined as M (t) = ¢(t) = [0, e f(x)dx, —h <t < h
for some h > 0.

O The (100c)th percentile is x, such that F(z,) = [*% f(z)dz = a.
< Erample: Let X be the distance in feet between bad records on a used tape with the
p.d.f.

f(z) =4 0<z <0

Then the probability that no bad records appear within the first 40 feet is

P(X > 40) = [ f(z)dx = e~ = 0.368



Uniform, Exponential, Gamma, Chi-Square, Normal,
Beta, Student-t, and F Distributions

Uniform U(a,b) f(z) =57, a<z<b

1

96_”/9, 0<zx<oo

Exponential f(z) =

Gamma f(z) = F(O})eaxo‘_le_“’/e, 0<z<o0
x*(r) Chi-Square f(z) = Wx(rﬂ)*le*w/?’ 0<z<oo
N(u,0*) Normal f(z) = ﬁe*(‘”*“)g/@‘ﬂ), —00 <& < 00

Beta Distribution f(z) = 2@ po-1(] _4)8~1 0 <z < 1

Let Z ~ N(0,1), X ~ x*(n), Y ~ x*(m), define T = ﬁ and F' = 92(22((72%217 then
x2(n)/n
Student-t Distribution fr(t) = \/ﬁr(n/l;()([ﬁ(lt)g/fi)](n+1)/2, 00 <t < oo

. . . n+m n/m)™/ 2w(n/2) -1
F Distribution fr(w) = FF(S/;)FF(%%[I/Jrn)w/m](mrm)/z7 0 <w < oo



Gamma, Exponential, y?> Distributions

Consider an (approximate) Posisson distribution with mean (arrival rate) A, let the r.v.
X be the waiting time until the ath arrival occurs. Then the cumulative distribution of X
can be expressed as

F(z) = P(X<z)=1-P(X >ux)
1 — P(fewer than a arrivals in (0, z]) (1)
= 1- X3Sl (A)*/ (k)]

o

F(&)xa’le’)‘x,o <xr<oo, a>0 (2)

fx) = F'(z) =

Let 8 = 1/A, we have the p.d.f. of Gamma Distribution

f(z) = F(Oéwaav‘“_le_””/g,() <x < oo (3)
For Gamma distribution, if & = 1, we have the p.d.f. of Exponential Distribution

f(z) :%6_”/6, 0<z<o0 (4)

For Gamma distribution, if # = 2 and o = r/2, where r is a positive integer, then we
have the p.d.f. of x?(r) distribution with r degrees of freedom.

1 (T/Q)flefx/Z

f(x):Wx , 0<z < oo (5)

For Gamma Distribution,

M(t)=1/(1—60t)* u=ab, c* = ab?
For Exponential Distribution,

M@t)=1/(1-0t), u=10, o* = 0?
For x?(r) Distribution,

M@#)=1/(1-2t)"2 p=r, 02 =2r



Normal (Gaussian) Distributions

A normal distribution of r.v. X ~ N(u,o?) has the p.d.f.

f(.?i') — \/21_7TO ef(xfu)2/202 (6)

02t2

0 M(t) = 6(1) = e+

O (X —p)/o~N(0,1)

0 Z~N(0,1) = Y =22~ x%(1)

When p=0,0 =1, X ~ N(0,1) is said to have the standard normal distribution. The
cumulative distribution is denoted as

& O(2) =2 \/%6*‘”2/2(&, —00 <2 <00

Define I'(x) = [° e 't*"dt for z > 0 and let v = [5° e~**dz, show that
(a) v = [Fede = @

(b) Show that I'(3) =2y = /7
(c) DNz +1)=2al'(z), for x>0, I'(n)=(Mnm—-1)lifneN.

Proof: (a)
o= (e ) (e dy) = J S e dady
= f()% fooo €7T2Jr70($,y)d7’d0 — fO% f(;x) 677«27’de¢9 (7)
=
Proof: (b)
F(%) = f(;X) e_tt%_ldt = f(;X) e_tt_%dt
= [Temtrd@?) = 2feda (8)

= VA



Moment-Generating Function for Exponential
Distribution

(1) Exponential distribution: f(z) = %e_“’/e, x>0,

/OOO f(z)dx = /OOO %ex/edx = e /0> =1 9)
o(t) = E[e?] = [Zef(x)da

= Joole" s/ dx

(10)
e LT
= ﬁ fort< %
0
E[X]=¢'(0)= a=ae li=0= 0 (11)
20>

Var(X) = ¢"(0) = [¢/(0))* = a—a0p im0 =07 = 6° (12)



Moment-Generating Function for N(u,o0?) Distribution

N2 2
L W20 o < 1 < 00,
2wo

(2) Normal distribution: X ~ N(u, o?), f(z) =

(2.1) v = [Fe*dr = ?

Proof:
o= (fedr) (ke vdy) = fE S e dudy

= fo% Jo e Jrg(w,y)drdo = fog [ e rdrdd (13)

INE

(2.2) Given I'(x) = [;° e "t* 1dx for z > 0, then ['(z + 1) = z['(z).

(2.3) T'(n+1) =n! for n >0, where 0! = 1, and I'(3) = /7.

(72t2

(2.4) X ~ N(u, 0?), then ¢(t) = E[e*] = e T2,

Proof: Y
D) = [l e

o0 —(z—(u+0o2t))2+ (202 4421 /252
e f—OO {\/21—7_(_0_6[ ( (l+ t)) +(2 ut-}— t )]/2 }dl‘

(14)

e el ol L o-i/20%) gy

2,2
— 6”t+ = 2t
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Moment-Generating Function for y?(r) Distribution

(3) Z~N(0,1) = Y = 2%~ \2(1).

Proof:
VI

F)=PIY <yl =Plvi<Z< il = [* e Pd: (15)

1

—1/2,-y/2
NORES

fly) = F'(y) = , 0<y<oo (16)

ot) = [ [ele’_lme_w/Q]dm

oor —( -tz .—
= g Sl 0 g

(17)

= T ocle vy dy

=
|
[\
~~
=
—~
NIl

(3.2) Let Y; ~ x*(1), 1 <j <r be independent x? distribution with 1 degree of freedom.
Define Y = 3°%_, Y}, then Y ~ x*(r) has x* distribution with 7 degrees of freedom.
The p.d.f. and the moment- generating function are given below.

1

Wy(qq/mileiy/a 0< Y < 0 (18)

fly) =

o(t) =1/(1L=2t)"2, BlY]=¢'(0)=r, Var(Y)=¢"(0) - [¢'(0)=2r (19)

Proof:
¢y(t) = Elexp(tY)] = Elexp(3j_ 1Y)
= I Elexp(tY;)] = Ij_ 0y, (¢) (20)
= II" — 1

J= 1‘/ (1,275)1‘/2
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Moment-Generating Functions for Gamma

Distributions
(4) Gamma(a,0) distribution: f(z) = r(al)ea 2 lem®/f 0 <x < o0

(4.1) For Gamma distribution, if « = 1, we have the p.d.f. of Exponential Distribution

1
f(z) = 56_”9, 0<z<oo (21)

(4.2) For Gamma distribution, if # = 2 and a = r/2, where 7 is a positive integer, then we
have the p.d.f. of x? distribution with r degrees of freedom, denoted as X ~ x*(r).

1 -1, —x
f(z) = F(T/2)2T/2x(r/2) ™22 )<z < o0 (22)

(4.3) ¢(t) =1/(1 —0t)*, p = ab, 0? = ab?
(4.4) For Exponential distribution, ¢(t) = 1/(1 — 60t), u =0, o = 62
(4.5) For x?(r) distribution, ¢(¢) = 1/(1 —2t)"/2, p=r, 0> = 2r

Proof:

Qb(t) _ fooo [etazr(al)aexaflefx/ﬂ dzr

= g o (76T da (23
23
= G Jo le vy dy

1—60)=
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Exercises for N(u,0?), Gamma(q, ), x* Distributions

1. Define I'(z) = [ e "*~1dt for 2 > 0 and let v = [ e *"dz, show that

(@) v=J5° e~ dy = @
(b) Show that I'(3) =2y = /7

(c) Nz +1)=2al'(z), forx >0, I'(n)=(n—-1)lifne N.

2. Let X ~ N(10,36), write down the pdf for X and compute

(a) P(X >5).

(b) P(4 < X < 16).
(c) P(X <8).

(d) P(X < 20).

(e) P(X > 16).

3. Let Z ~ N(0,1) and Y = Z?, then Y is said to have a x? distribution of 1 degree of

freedom, denoted as x?(1).

(a) Show that fy(y) = & “2ev2 0 <y < oo

1
(1/2)21/2 y

(b) Show that ¢(t) = s, t< 2

— =27 2

(c) If Y1, Ys, -+, Y ~ x?(1) and Y}, Y5, - - -, Y}, are independent, define W = Z?;l Y;,
then W ~ x2(k).

(d) Show that ¢w(t) = m and fy(z) = Wx(km_le_”ﬂ, 0<z<o0

(e) Y ~ x?(6) is a random variable with 6 degrees of freedom, write down the pdf for
Y and compute P(Y < 6) and P(3 <Y <9).

4. If W is an exponential distribution with mean 6, write down the pdf for W and compute

(a) P(W < 6).
(b) P(W > 18 | W > 12).
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Matlab Codes for Continuous Distributions

h
h
h

A
h

hh
hh

b
A

A

h
b
b
b

Script file: ch3.m - Continuous Distributions

Exponential Distribution

subplot(2,2,1)

X=0.1:0.1:12;

Ya=exppdf (X,1); Yb=exppdf (X,2); Yc=exppdf(X,4); Yd=exppdf(X,7);
plot(X,Ya,’r-’,X,Yb, g-,X,Yc, ’b-",X,Yd, 'mn-"); %axis([0,12, 0,0.3])
legend ("Exp(1)’,’Exp(2)’, ’Exp(4)’, Exp(7)’)

title(’ (4) Exponential(\theta), \theta=1,2,4,7’)

Chi-Square Distributions

subplot(2,2,2)

X=0.1:0.1:12;

Y1=chi2pdf (X,1); Y2=chi2pdf(X,2); Y4=chi2pdf(X,4); Y7=chi2pdf(X,7);
plot(X,Y1,’r-’ ,X,Y2,’g-" ,X,Y4,’b-" ,X,Y7,’n-’); %axis([0,12, 0,0.3])
legend(’\chi~2(1)’,’\chi~2(2)’,’\chi~2(4)’,’\chi~2(7)’)

title(’ (5) \chi~2(r), r=1,2,4,7’)

Normal Distributions

subplot(2,2,3)

X7=-6:0.2:6; u=0; s1=1; s2=2; s3=2.5; s4=3;

Y7a=normpdf (X7,u,s1); Y7b=normpdf (X7,u,s2); Y7c=normpdf(X7,u,s3);
Y7d=normpdf (X7,u,s4) ;
plot(X7,Y7a,’r-’,X7,Y7b,’g-’ ,X7,Y7c, b=’ ,X7,Y7d, ’m-") ;
axis([-6,6, 0,0.42])
legend(’°N(0,1)’,’N(0,4)’,’N(0,6.25)’,°N(0,9)’)

title(’ (6) Normal Distribution: N(u,s"2)’)

Gamma Distributions

subplot(2,2,4)

X6=0.1:0.1:12; t1=2; t2=3; t3=4; t4=4;

Y6a=gampdf (X6,3,t1); Y6b=gampdf (X6,3,t2);

Y6c=gampdf (X6,2,t4); Y6d=gampdf (X6,4,t4);
plot(X6,Y6a,’r-’,X6,Y6b, ’g-’ ,X6,Y6c, ’b-’,X6,Y6d, 'm-’) ;
axis([0,12, 0,0.3])

legend (’\Gamma(3,2)’,’\Gamma(3,3)’,’\Gamma(2,4) ’, ’\Gamma (4,4) ’)
title(’ (7) \Gamma(\alpha, \lambda)’)

Uniform Distributions
X1=0:0.01:1; VYi=unifpdf(X1,0,1); plot(X1,Y1,’r-’);
title((9) ’Uniform Distribution U(0,1)’)



Some Continuous Distributions
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