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Chapter 2. Discrete Distributions

♣ Random Variables of the Discrete Type

♣ Mathematical Expectation

♣ The Mean, Variance, and Standard Deviation

♣ Bernoulli Trials and the Binomial Distributions

♣ The Moment Generating Functions

♣ The Poisson Distribution

✷ Random Variables of the Discrete Type

Definition: Given a random experiment with an outcome space S, a function X that
assigns to each element s in S one and only one real number x = X(s) is called
a random variable (r.v.). The space of X is referred to as the set of real numbers
Ω = {x : X(s) = x, s ∈ S}.

Definition: The probability mass function (p.m.f) f of a discrete r.v. X is a function that
satisfies the following properties:

(a) f(x) > 0, x ∈ Ω;

(b)
∑

x∈Ω f(x) = 1;

(c) P (Y ⊂ Ω) =
∑

x∈Y f(x);

Example 1. Roll a four-sided die twice, and let X equal the larger of the two outcomes
are different and the common value if they are the same. The outcome space for
the experiment is S = {(d1, d2)|1 ≤ d1, d2 ≤ 4}, where we assume that each of these
16 points has probability 1

16
. Then P (X = 1) = P [(1, 1)] = 1/16, P (X = 2) =

P [{(1, 2), (2, 1), (2, 2)}] = 3/16, and similarly P (X = 3) = 5/16 and P (X = 4) =
7/16. The p.m.f. of X can be written simply as

f(x) = P (X = x) =
2x− 1

16
, x = 1, 2, 3, 4.
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Mathematical Expectation

Definition: If f is the p.m.f. of the r.v. X of the discrete type with space Ω and if the
summation

∑

x∈Ω u(x)f(x) exists, then the sum is called the mathematical expecta-
tion, or the expected value of the function u(X), which is denoted by E[u(X)], that
is,

E[u(X)] =
∑

x∈Ω u(x)f(x).

Theorem: The mathematical expectation E satisfies

(a) If c is a constant, E[c] = c.

(b) If c is a constant, and u is a function, then E[cu(X)] = cE[u(X)].

(c) If c1, c2 are constants, and u1, u2 are functions, then E[c1u1(X) + c2u2(X)] =
c1E[u1(X)] + c2E[u2(X)].

Definition: The kth moment mk, k = 1, 2, · · · of a random variable X is defined by the
equation

mk = E(Xk), where k = 1, 2, · · ·

Then E(X) = m1, and V ar(X) = E[(X−E(X))2] = E(X2)−[E(X)]2 = m2−(m1)
2.

Example 1. The number of defects on a printed board is a r.v. X with p.m.f. given by

P (X = i) =
γ

i+ 1
, for i = 0, 1, 2, 3, 4

(a) Show that the constant γ = 60
137

.

(b) Show that E(X) = 163
137

and V ar(X) = 33300
18769

.

Example 2. The number of cells (out of 100) that exhibit chromosome aberrations is a
random variable X with p.m.f. given by

P (X = i) =
β(i+ 1)2

2i+1
, for i = 0, 1, 2, 3, 4, 5

(a) Show that the constant β = 32
159

.

(b) Show that E(X) = 390
159

and V ar(X) = 57462
25281

.
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Uniform, Bernoulli, Binomial, Geometric,
and Poisson Distributions

Uniform Distribution When a probability mass function (p.m.f.) is constant on the
space or support, we say that the distribution is uniform over the space. For example,
let X is the face value of rolling a fair die, then X has a discrete uniform distribution
on S = {1, 2, 3, 4, 5, 6} and its p.m.f. is

f(x) =
1

6
, x = 1, 2, 3, 4, 5, 6.

Bernoulli Trials A r.v. X assuming only two values 0 and 1 with the probability P(X=1)=p
and P(X=0)=q=1−p is called a Bernoulli r.v. Each action is called a Bernoulli trial.

Binomial Distribution Consider a sequence of n independent Bernoulli trials. A r.v. X
with the probability of exactly x successes is

f(x) = P(X=x) = C(n,x)pxqn−x, x = 0, 1, . . . , n.

Geometric Distribution Consider a sequence of independent Bernoulli trials. A r.v. X
with the probability of the first success (X=1) at the x− th trial equals

f(x) = P(X=x) = qx−1p, x = 1, 2, . . .

Poisson Distribution A r.v. X has a Poisson distribution with parameter λ > 0 if

f(x) = P(X=x) = (e−λλx)/(x!), x = 0, 1, . . .
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Approximate Poisson Process

For the number of changes that occurs in a given continuous interval, we have an approxi-
mate Poisson process with parameter λ > 0 if

(1) The number of changes occurring in nonoverlapping intervals are independent.

(2) The probability of exactly one change in a sufficient short interval of length ∆ is
approximated by λ∆.

(3) The probability of two or more changes in a sufficient short interval is essentially
zero.

Let λ be fixed, and ∆ = 1
n
with a large n.

P (X = x) =

(

n
x

)

(λ
n
)x(1− λ

n
)n−x

= n!
(n−x)!x!

λx

nx (1−
λ
n
)n(1− λ

n
)−x

= n
n
· n−1

n
· · · n−x+1

n
λx

x!
(1− λ

n
)n(1− λ

n
)−x

= λxe−λ

x!
as n → ∞
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Moment-Generating Functions

Definition: Let X be a r.v. of the discrete type with p.m.f. f and the sample space S. if
there is an h > 0 such that

M(t) ≡ E(etX) =
∑

x∈S

etxf(x)

exists and is finite for t ∈ (−h, h), then the function M(t) is called the moment-
generating function (m.g.f.) of X .

Remark: If the m.g.f. exists, there is one and only one distribution of probability associ-
ated with that m.g.f.

Binomial Distribution: For X ∼ b(n, p), and p+ q = 1,

M(t) = E(etX) =
n
∑

x=0

etx







n

x





 pxqn−x

=
n
∑

x=0







n

x





 (pet)xqn−x = (q + pet)n

E(X) = M ′(0) = np and V ar(X) = M ′′(0)− [M ′(0)]2 = np(1− p).

Poisson Distribution: Let X have a Poisson distribution with mean λ, then

M(t) = E(etX) =
∞
∑

x=0

etx
e−λλx

x!

=
∞
∑

x=0

e−λ (λe
t)x

x!
= e−λ · eλe

t

= eλ(e
t
−1)

E(X) = M ′(0) = λ and V ar(X) = M ′′(0)− [M ′(0)]2 = λ.
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Mean, Variance, and Moment Function
of Discrete Distributions

Bernoulli f(x) = px(1− p)1−x, x = 0, 1

M(t) = 1− p+ pet; µ = p, σ2 = p(1− p)

Binomial f(x) = n!
x!(n−x)!

px(1− p)n−x, x = 0, 1, 2, . . . , n

b(n, p) M(t) = (1− p+ pet)n; µ = np, σ2 = np(1− p)

Geometric f(x) = (1− p)x−1p, x = 1, 2, . . .

M(t) = pet

1−(1−p)et
, t < −ln(1 − p)

µ = 1
p
, σ2 = 1−p

p2

Hypergeometric f(x) = C(N1,x)C(N2,n−x)
C(N,n)

, x ≤ n, x ≤ N1, n− x ≤ N2

M(t) = ×

µ = n
(

N1

N

)

, σ2 = n
(

N1

N

) (

N2

N

) (

N−n
N−1

)

Negative Binomial f(x) = C(x− 1, r − 1)pr(1− p)x−r, x = r, r + 1, r + 2, . . .

M(t) = (pet)r

[1−(1−p)et]r
t < −ln(1 − p)

µ = r
p
, σ2 = r(1−p)

p2

Poisson f(x) = λxe−λ

x!
, x = 0, 1, 2, . . .

M(t) = eλ(e
t
−1); µ = λ, σ2 = λ

Uniform f(x) = 1
m
, x = 1, 2, . . .

M(t) = 1
m
· et(1−emt)

1−et
; µ = m+1

2
, σ2 = m2

−1
12
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Some Examples

1. Compute the probability function of the r.v. X that records the sum of the faces of two
dice.

Solution: The sample space Ω = {(i, j)| 1 ≤ i, j ≤ 6}. The random variable X is the
function X(i, j) = i+ j which takes the range R = {2, 3, · · · , 12} with the probability
function listed as

The probabilities of sum of two faces in casting two dice

X(i, j) = s 2 3 4 5 6 7
P (X = s) 1/36 2/36 3/36 4/36 5/36 6/36
X(i, j) = s 8 9 10 11 12
P (X = s) 5/36 4/36 3/36 2/36 1/36

2. It is claimed that 15% of the chickens in a particular region have patent H5N1 infection.
Suppose seven chickens are selected at random. Let X equal the number of chickens
that are infected.

(a) Assuming independence, how is X distributed? [X ∼ b(7, 0.15)].

(b) P (X = 1) =







7

1





 (0.15)1(0.85)6.

(c) P (X ≥ 2) = 1− P (0)− P (1) = 1− (0.85)7 −







7

1





 (0.15)1(0.85)6.

3. Let a r.v. X have a binomial distribution with mean 6 and variance 3.6. Find P (X = 4).

Solution: Since X ∼ b(n, p) with np = 6 and npq = 3.6, then q = 0.6, p = 0.4, and

n = 15. Thus, P (X = 4) =







15

4





 (0.4)4(0.6)11 ≈ 0.1992.
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4. Let a r.v. X have a geometric distribution. Show that

P (X > k + j|X > k) = P (X > j), where k, j ≥ 0

We sometimes say that in this situation there has been loss of momory.

Solution: Let p be the rate of success in a geometric distribution. Then P (X > j) =
∑

∞

r=j+1(1− p)r−1p = (1− p)j, thus

P (X > k + j|X > k) =
P (X > k + j)

P (X > k)
=

(1− p)k+j

(1− p)k
= (1− p)j = P (X > j).

5. Let X have a Poisson distribution with a variance of 3, then P (X = 2) = e−332

2!
≈ 0.224

and P (X = 3) = e−333

3!
≈ 0.224.

6. Flaws in a certain type of drapery material appear on the average of one in 150 square
feet. If we assume the Poisson distribution, find the probability of at most one flaw
in 225 square feet.

Solution: Since λ = 225/150 = 1.5, then P (X ≤ 1) = e−1.5(1.5)0

0!
+ e−1.5(1.5)1

1!
≈ 0.5578
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Negative Binomial Distribution

✷ Negative Binomial Distribution
Suppose that we observe that a sequence of Bernoulli trials until exactly r successes occur.
Let the random variable X denote the number of trials needed to observe the rth success.
Let the probability of success is p in a Bernoulli trial. Then X has a negative binomial
distribution with the p.m.f.

f(x) =

(

x− 1
r − 1

)

prqx−r, x = r, r + 1, r + 2, · · ·

and

M(t) =
(pet)r

[1− (1− p)et]r
, t < −ln(1 − p)

E(X) =
r

p
, and V ar(X) =

r(1− p)

p2

Note : (1− w)−r =
∑

∞

k=0

(

k + r − 1
r − 1

)

wk

[Proof:]

M(t) =
∑

∞

x=r e
tx

(

x− 1
r − 1

)

prqx−r =
∑

∞

k=0

(

k + r − 1
r − 1

)

(pretr)(qketk)

= (pet)r
∑

∞

k=0

(

k + r − 1
r − 1

)

(qet)k = (pet)r(1− qet)−r

= (pet)r

(1−qet)r
, t < −ln(1 − p)

E(X) =
∑

∞

x=r x

(

x− 1
r − 1

)

prqx−r =
∑

∞

y=r+1 r ·

(

y − 1
r

)

prqy−(r+1)

= rpr(1− q)−r−1 = r
p

V ar(X) = E(X2)− [E(X)]2 = E(X(X − 1)) + E(X)− [E(X)]2
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Hypergeometric Distribution

✷ Hypergeometric Distribution
Consider a collection of N1 green marbles and N2 blue marbles of the same size, where
N1 + N2 = N . A collection of n marbles is selected from N marbles at random without
replacement. Let a r.v. X be the number of green marbles selected among n with 0 ≤ x ≤ n.
Then X has a hypergeometric distribution with the p.m.f.

f(x) =

(

N1

x

)(

N2

n− x

)

(

N
n

) 0 ≤ x ≤ n ≤ N1, n− x ≤ N2, N1 +N2 = N.

and

E(X) = n
(

N1

N

)

, and V ar(X) = n
(

N1

N

)(

N2

N

)(

N − n

N − 1

)

What is M(t)? (not available)

Note : (1 + y)N = (1 + y)N1(1 + y)N2

[Proof:]

E(X) =
∑n

x=0 x ·

(

N1

x

)(

N2

n− x

)

(

N
n

)

= · · ·

=
∑n−1

y=0

(

n·N1

N

)

(

N1 − 1
y

)(

N2

(n− 1)− y

)

(

(N1 − 1 +N2) = N − 1
n− 1

) = n
(

N1

N

)

V ar(X) = E(X2)− [E(X)]2 = E(X(X − 1)) + E(X)− [E(X)]2
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Matlab Code and Results

% Script file: ch2.m - Discrete Distributions

subplot(2,2,1)

X=1:10; Y=geopdf(X,0.5); bar(X,Y,0.8);

legend(’Geometric Distribution: p=0.5’,1)

subplot(2,2,2)

X=0:10; Y=poisspdf(X,3); bar(X,Y,0.8)

legend(’Poisson Distribution: \lambda =3’,1)

subplot(2,2,3)

X=0:10; Y=binopdf(X,10,0.7); bar(X,Y,0.8)

legend(’X \sim b(10,0.7), mode=7’,1)

subplot(2,2,4)

X=0:11; Y=binopdf(X,11,0.5); bar(X,Y,0.8)

legend(’X \sim b(11,0.5), mode=5,6’,2)
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