Partial Solutions for Assignment 2

(1) Let the random variable X have a p.m.f.

$$f(x) = \frac{(|x|+1)^2}{9}, \quad x = -1, \ 0, \ 1$$

Then (a)
$$E(X) = 0$$
, (b) $E(X^2) = \frac{8}{9}$, and (c) $E(3X^2 - 2X + 4) = \frac{20}{3}$.

- (2) Let X have a Poisson distribution of variance 4. Then (a) $P(X = 4) = (e^{-4}4^4)/(4!) \approx 0.1954$ and (b) $P(2 \le X \le 6) \approx 0.889 0.092 = 0.797$
- (3) It is believed that 20% of Americans do not have any health insurance. Suppose that this is true and let X equal the number with no health insurance in a random sample of n = 15 Americans.
 - (a) $X \sim b(15, 0.2)$.
 - (b) E(X) = 3, Var(X) = 2.4, and $Std. = \sqrt{2.4} = 1.5492$.
 - (c) $P(X \ge 2)1 P(X = 0) P(X = 1) = 0.8329$.
- (4) Let W have a geometric distribution with parameter p.
 - (a) $P(W = w) = (1 p)^{w-1}p$, $w = 1, 2, \cdots$
 - (b) E[X] = 1/p, $Var(X) = (1-p)/p^2$.
 - (c) $P(W > k) = \sum_{i=k+1}^{\infty} (1-p)^{i-1} p = (1-p)^k$. Thus $P(W > (k+j)|W > k) = \frac{(1-p)^{k+j}}{(1-p)^k} = P(W > j)$. where k, j are nonnegative integers.
- (5) See Lecture Notes.
- (6) The probability mass functions and moment-generating functions are as follows.
 - (a) $E(X) = \frac{1}{p}$, then p = 0.8, $M(t) = \frac{0.8e^t}{1 0.2e^t}$.
 - (b) $X \sim b(50, 0.6), M(t) = (0.4 + 0.6e^t)^{50}$.
 - (c) $f(x) = \frac{e^{-4}4^x}{x!}$, $x = 0, 1, \dots, M(t) = e^{4(e^t 1)}$.

(7) Implement the following Matlab codes and print out the results.

```
%
% Script file: h2p7.m - Discrete Distributions
%
subplot(2,2,1)
X=1:10; Y=geopdf(X,0.5); bar(X,Y,0.8);
legend('Geometric Distribution: p=0.5',1)
subplot(2,2,2)
X=0:10; Y=binopdf(X,10,0.6); bar(X,Y,0.8)
legend('X \sim b(10,0.6), mode=6',1)
subplot(2,2,3)
X=0:10; Y=poisspdf(X,4); bar(X,Y,0.8)
legend('Poisson Distribution: \lambda =4',1)
subplot(2,2,4)
X=0:11; Y=binopdf(X,11,0.5); bar(X,Y,0.8)
legend('X \sim b(11,0.5), mode=5,6',2)
```

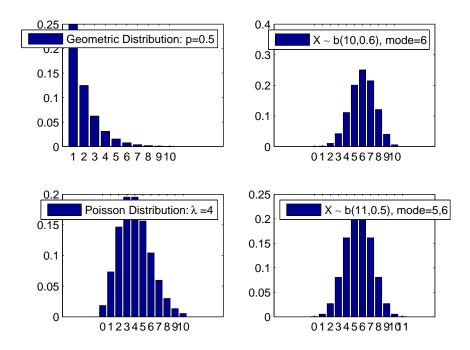


Figure 1: H2.P7 Solution.

- (8) Suppose that 2000 points are independently and randomly selected from the unit square $S = \{(x,y) : 0 \le x, y \le 1\}$. Let Y equal the number of points that fall in $A = \{(x,y) : x^2 + y^2 \le 1\}$.
 - (a) $b(2000, \frac{\pi}{4})$, i.e., binomial distribution
 - (b) 500π , $500\pi(1-\frac{\pi}{4})$
 - (c) π
 - (d) $\sum_{k=0}^{k=100} C(2000, k) (\pi/4)^k (1 \pi/4)^{2000-k}$
- (9) The probability mass (density) function (p.m.f. or p.d.f.) and the space of the random variable for the problems are given as follows.

(a)
$$X \sim b(50, 0.8), f(x) = {50 \choose x} (0.8)^x (0.2)^{50-x}, 0 \le x \le 50.$$

- (b) $f(x) = (0.5)^x$, $x = 1, 2, 3 \cdots$
- (c) $f(x) = \frac{e^{-4}4^x}{x!}$, $x = 0, 1, 2, \dots$
- (d) $f(x) = \frac{1}{10}e^{-x/10}, x \ge 0$
- (e) $f(x) = \frac{1}{16}x^2e^{-x/2}, x > 0.$
- (f) $f(x) = \frac{1}{\sqrt{32\pi}}e^{-(x-5)^2/32}, -\infty < x < \infty$