Solutions for Exam 2 of CS3332(01), Spring 2015

10:10-11:50, Wednesday, June 17, 2015

Name: _____ SN: _____ Gn: ____ Index: _____

(30pts) 1. Fill the following blanks (no partial credits).

- (a) Let $\{X_i \sim b(5, 0.8), 1 \le i \le 10\}$ be a random sample and let $X = \sum_{i=1}^{10} X_i$. Then the p.m.f. of X, $f_X(x) = C_x^{50}(0.8)^x(0.2)^{50-x}, 0 \le x \le 50$ the moment-generating function $M_X(t) = (0.2 + 0.8e^t)^{50}$
- (b) Let $\{Y_i, 1 \leq i \leq 10\}$ be a random sample of Poisson distribution with variance $Var(Y_1) = 0.8$ and define $Y = \sum_{i=1}^{10} Y_i$. Then

the p.m.f. of
$$Y$$
, $f_Y(y) = \frac{e^{-8}8^y}{y!}$, $y = 0, 1, 2, \dots, \infty$

the moment-generating function $M_Y(t) = \underline{e^{8(e^t-1)}}$

(c) Define $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$, then

$$\Gamma(5) = \underline{24}, \ \Gamma(7) = \underline{720}$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
, $\Gamma(\frac{5}{2}) = \frac{3}{4}\sqrt{\pi}$

(d) Let X be a random variable having an *exponential* distribution with the variance Var(X) = 9, then

the p.d.f. of
$$X$$
, $f_X(x) = \frac{1}{3}e^{-x/3}$, $x > 0$

the moment-generating function $M_X(t) = \frac{1}{1-3t}, \ t < \frac{1}{3}$

(e) Let $X \sim \chi^2(8)$, that is, X has a *Chi-square* distribution with the degrees of freedom 8, then

the p.d.f. of
$$X$$
, $f_X(x) = \frac{1}{\Gamma(4)2^4} x^3 e^{-x/2}, \ x > 0$

the moment-generating function $M_X(t) = \frac{1}{(1-2t)^4}, \ t < \frac{1}{2}$ and the variance $Var(X) = \frac{16}{16}$

(30pts) 2. Fill the following blanks (no partial credits).

(a) Let $\{X_i, 1 \le i \le 9\}$ be a random sample of size 9 from N(2,1). Define $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i$ and $Y = \sum_{i=1}^{9} (X_i - 2)^2$. Then

the moment-generating function $M_{\overline{X}}(t) = e^{2t + (t^2/18)}$

the moment-generating function $M_Y(t) = \frac{1}{(1-2t)^{9/2}}$

(b) Let $\{Z_i \sim N(0,1), \ 1 \le i \le 10\}$ be a random sample of size 10. Define $V = \sum_{i=1}^{10} Z_i$ and $W = \sum_{i=1}^{10} Z_i^2$. Then

the moment-generating function $M_V(t) = \underline{e^{5t^2}}$

the moment-generating function $M_W(t) = \frac{1}{(1-2t)^5}$

(c) Let $\{X_1, X_2, \dots, X_n\}$ be a random sample of size n from the exponential distribution with $E(X_n) = 3$. Define $Y = \sum_{i=1}^n X_i$. Then

the p.d.f. of
$$Y$$
, $f_Y(y) = \frac{1}{\Gamma(n)3^n} y^{n-1} e^{-y/3}, y > 0$

the moment-generating function of Y, $\phi_Y(t) = \frac{1}{(1-3t)^n}$

(d) Let $Z \sim N(0, 1)$. Define Y = 3Z + 2, then

the p.d.f. of
$$Y$$
, $f_Y(y) = \frac{1}{\sqrt{18\pi}} exp[-\frac{(y-2)^2}{18}], -\infty < y < \infty$

the moment-generating function of Y, $\phi_Y(t) = e^{2t + \frac{9t^2}{2}}$

(e) Let $\{X_i \sim \chi^2(1), 1 \leq i \leq n\}$ be a random sample and define $W_n = (\sum_{i=1}^n X_i - n)/\sqrt{2n}$. According to the Central Limit Theorem,

the limiting distribution function of $W_n \ limit_{n\to\infty} P(W_n \le w) = \int_{-\infty}^w \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = \Phi(w)$

the limiting moment-generating function is $\lim_{n\to\infty} M_{W_n}(t) = e^{t^2/2}$

(10pts) 3. Let the r.v. X have the p.d.f. $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, 0 < x < 1, where $\alpha, \beta > 0$ are known positive integers.

Find E[X] and Var[X].

Hint:
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 and $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

See Lecture Notes

- (10 pts) 4. Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics of a random sample $\{X_1, X_2, \cdots, X_n\}$ from the uniform distribution U(0,1).
 - (a) Find the probability density function of $X_{(1)}$.
 - (b) Use the results of (a) to find $E[X_{(1)}]$.
 - (c) Find the probability density function of $X_{(n)}$.
 - (d) Use the result of (c) to find $E[X_{(n)}]$.

Hint: Let $\{X_1, X_2, \dots, X_n\}$ be a random sample from U(0, 1), then $X_{(1)} = min\{X_1, X_2, \dots, X_n\}$ and $X_{(n)} = max\{X_1, X_2, \dots, X_n\}$.

See Lecture Notes

(10pts) 5. Let X have the p.d.f. $f(x) = \beta x^{\beta-1}$, 0 < x < 1 for a given $\beta > 0$. Define $Y = -3\beta ln(X)$.

- (a) Compute the distribution function of $Y, P(Y \le y), for \ 0 < y < \infty.$
- (b) Find the moment-generating function $M_Y(t)$.
- (c) Find E(Y) and Var(Y).

See Lecture Notes

(10pts) 6. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. Similarly, kurtosis is a measure of the "peakness" of the probability distribution of a real-valued random variable. Let X be a continuous random variable having $E(X) = \mu$ and $Var(X) = \sigma^2$. Define

$$Skew(X) = E[(X - \mu)^3]/\sigma^3$$

$$Kurtosis(X) = E[(X - \mu)^4]/\sigma^4$$

Let $Z \sim N(0,1)$ and $W \sim N(1,4)$. Show your processes to solve $(\mathbf{a} \sim \mathbf{d})$.

- (a) Compute Skew(Z).
- (b) Compute Kurtosis(Z).
- (c) Compute Skew(W).
- (d) Compute Kurtosis(W).

Solution:

- (a) $Skew(Z) = E[(Z-0)^3]/1^3 = E(Z^3) = M^{(3)}(0) = 0.$
- (b) $Kurtosis(Z) = E[(Z-0)^4]/1^4 = E(Z^4) = M^{(4)}(0) = 3.$
- (c) Skew(W) = 0 since $\frac{W E(W)}{\sqrt{Var(W)}} \sim N(0, 1)$.
- (d) Kurtosis(W) = 3 since $\frac{W E(W)}{\sqrt{Var(W)}} \sim N(0, 1)$.