Midterm Exam for CS3332(01), Spring 2015

Name: _____ SN: _____ Gn: ____ Index: _____

(30pts) 1. Choose the *best* (unique) solution for each of the following problems.

(1)(a) Let X be a gamma distribution with p.d.f. $f(x) = \frac{1}{16}x^2e^{-x/2}$, $0 \le x \le \infty$, then the moment-generating function is

(1)
$$\frac{1}{(1-2t)^3}$$
, (2) $\frac{1}{(1-3t)^2}$, (3) $\frac{1}{1-2t}$, (4) $\frac{1}{1-3t}$, (5) none

- (2)(b) Let X have a density function f(x) = ¹/₂e^{-x/2}, x ≥ 0, then the variance of X is
 (1) 2, (2) 4, (3) ¹/₂, (4) ¹/₄, (5) none
- (3)(c) Let X have a density function f(x) = ¹/₂e^{-x/2}, x ≥ 0, then the median of X is
 (1) e⁻¹, (2) e⁻², (3) 2ln2, (4) (ln2)/2, (5) none
- (3)(d) Let X be a gamma distribution with p.d.f. $f(x) = \frac{1}{16}x^2e^{-x/2}$, $0 \le x \le \infty$, then the variance of X is

(1) 3, (2) 6, (3) 12, (4) 16, (5) none

(4)(e) Let X be a χ^2 distribution whose moment-generating function $\phi(t) = \frac{1}{(1-2t)^2}, t < \frac{1}{2}$, then the variance Var(X) is

(1) 1, (2) 2, (3) 4, (4) 8, (5) none

(1)(f) Let X be a χ^2 distribution whose moment-generating function $\phi(t) = \frac{1}{(1-2t)}, t < \frac{1}{2}$, then the first quartile of X is

 $(1) 2 \ln(\frac{4}{3}), (2) 2 \ln(\frac{2}{3}), (3) 0.25, (4) 0.75, (5)$ none

- (2)(g) Let $X \sim N(3, 4)$, then the moment-generating function of X is (1) e^{3t+4t^2} , (2) e^{3t+2t^2} , (3) $\frac{1}{4-3e^t}$, (4) $\frac{1}{3-4e^t}$, (5) none
- (3)(h) Let $X \sim N(3,4)$, then the median of X is

(1) 1, (2) 2, (3) 3, (4) 4, (5) none

- (4)(i) Let $Z \sim N(0, 1)$ and define X = 2Z + 3, then Var(X) equals (1) 1, (2) 2, (3) 3, (4) 4, (5) none
- (2)(j) Let X ~ N(3,4) and define Y = (X − 3)/2, then Var(Y²) equals
 (1) 1, (2) 2, (3) 3, (4) 4, (5) none

- (a) Let A and B be independent events with P(A) = 0.7 and P(B) = 0.2, then $P(A \cap B) = _0.14$ $P(A \cup B) = _0.76$
- (b) Let $X \sim b(50, 0.6)$, then $E(X) = \underline{30}$ $Var(X) = \underline{12}$ $M(t) = (0.4 + 0.6e^t)^{50}$
- (c) If the moment-generating function of X is $M(t) = \frac{2}{5}e^t + \frac{1}{5}e^{2t} + \frac{2}{5}e^{3t}$, then $E(X) = \underline{2}$ $Var(X) = \underline{4}$
- (d) A random variable X has p.d.f. $f(x) = \frac{x+1}{2}$, -1 < x < 1. Then the median of $X = -1 + \sqrt{2}$
- (e) Let $X \sim N(3, 4)$, then the p.d.f. of X is $f(x) = \frac{1}{\sqrt{8\pi}} e^{-(x-3)^2/8}$ the moment-generating function $\phi_X(t) = \underline{e^{3t+2t^2}}$
- (f) Let a random variable X have the Poisson distribution with variance 4. $E(X) = \underline{4}$ $M(t) = \underline{e^{4(e^t 1)}}$
- (g) Let a random variable X have the geometric distribution with E(X) = 4. Then $Var(X) = \underline{12}$ $M(t) = \frac{e^t}{4-3e^t}$
- (h) Let a random variable X have an exponential distribution with Var(X) = 4. Then

 $E(X) = \underline{2}$

The moment-generating function $\phi_X(t) = \frac{1}{1-2t}$

- (10pts)3. A box contains four marbles numbered 1 through 4. The marbles are selected one at a time without replacement. A match occurs if marble numbered k is the kth marble selected. Let the event A_i , denote a match on the *i*th draw, i=1,2,3,4.
 - (a) Find $P(A_i)$, for i=1,2,3,4.
 - (b) Find $P(A_i \cap A_j)$, where $1 \le i < j \le 4$.
 - (c) Find $P(A_i \cap A_j \cap A_k)$, where $1 \le i < j < k \le 4$.
 - (d) Find $P(A_1 \cup A_2 \cup A_3 \cup A_4)$.

See Lecture Notes

(10pts)4. Let the random variable X have a negative binomial distribution whose probability mass function (p.m.f.) is

$$f(x) = \begin{pmatrix} x-1\\ r-1 \end{pmatrix} p^r (1-p)^{x-r}, \quad \forall \ x = r, \ r+1, \ r+2, \ \cdots$$

- (a) Show your procedure to find the moment-generating function M(t).
- (b) Show your procedure to find the expectation E(X).
- (c) Compute the variance Var(X).

Hint:
$$(1-\omega)^{-r} = \sum_{k=0}^{\infty} \begin{pmatrix} k+r-1\\ r-1 \end{pmatrix} \omega^k$$

See Lecture Notes

- (10pts)5. Write Simple Matlab Codes to plot each of the following probability mass functions with a given random variable X.
 - (a) $X \sim b(10, 0.8)$.
 - (b) X has a geometric distribution with the expectation E(X) = 4.
 - (c) X has a Poisson distribution with variance 4.

See Homework Assignment