Exam 2 for CS3332(01), Spring 2015 10:10-11:50, Wednesday, June 17, 2015

	Name:	SN:	Gn:	Index:
(30)	pts) 1. Fill the following blanks	s (no partial credits).		
(a)	Let $\{X_i \sim b(5, 0.8), 1 \le i \le 10\}$	e and let $X = \sum_{i=1}^{10}$	X_i . Then	
	the p.m.f. of X , $f_X(x) = $			
	the moment-generating function $M_X(t) = \underline{\hspace{1cm}}$			
(b)	Let $\{Y_i, 1 \leq i \leq 10\}$ be a random sample of Poisson distribution with variance $Var(Y_1) = 0.8$ and define $Y = \sum_{i=1}^{10} Y_i$. Then			
	the p.m.f. of Y , $f_Y(y) = $			
	the moment-generating function	on $M_Y(t) = \underline{\hspace{1cm}}$		
(c)	Define $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$, the	en		
	$\Gamma(5) = \underline{\hspace{1cm}},$	$\Gamma(7) = \underline{\hspace{1cm}}$		
	$\Gamma(\frac{1}{2}) = \underline{\hspace{1cm}},$	$\Gamma(\frac{5}{2}) = \underline{\hspace{1cm}}$;	
(d)	Let X be a random variable having an $exponential$ distribution with the variance $Var(X)=9$, then			
	the p.d.f. of X , $f_X(x) = \underline{\hspace{1cm}}$			
	the moment-generating function $M_X(t) = \underline{\hspace{1cm}}$			
(e)	Let $X \sim \chi^2(8)$, that is, X has a <i>Chi-square</i> distribution with the degrees of freedom 8, then			
	the p.d.f. of X , $f_X(x) = $			
	the moment-generating function variance $Var(X) = \underline{\hspace{1cm}}$			and the

(30pts) 2. Fill the following blanks (no partial credits).				
(a) Let $\{X_i, 1 \leq i \leq 9\}$ be a random sample of size 9 from $N(2,1)$. Define $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i$ and $Y = \sum_{i=1}^{9} (X_i - 2)^2$. Then				
the moment-generating function $M_{\overline{X}}(t) = \underline{\hspace{2cm}}$				
the moment-generating function $M_Y(t) =$				
(b) Let $\{Z_i \sim N(0,1), \ 1 \le i \le 10\}$ be a random sample of size 10. Define $V = \sum_{i=1}^{10} Z_i$ and $W = \sum_{i=1}^{10} Z_i^2$. Then				
the moment-generating function $M_V(t) = \underline{\hspace{1cm}}$				
the moment-generating function $M_W(t) = \underline{\hspace{1cm}}$				
(c) Let $\{X_1, X_2, \dots, X_n\}$ be a random sample of size n from the exponential distribution with $E(X_n) = 3$. Define $Y = \sum_{i=1}^n X_i$. Then				
the p.d.f. of Y , $f_Y(y) = \underline{\hspace{1cm}}$				
the moment-generating function of Y , $\phi_Y(t) =$				
(d) Let $Z \sim N(0, 1)$. Define $Y = 3Z + 2$, then				
the p.d.f. of Y , $f_Y(y) = \underline{\hspace{1cm}}$				

the moment-generating function of Y, $\phi_Y(t) =$

(e) Let $\{X_i \sim \chi^2(1), 1 \leq i \leq n\}$ be a random sample and define $W_n = (\sum_{i=1}^n X_i - n)/\sqrt{2n}$. According to the Central Limit Theorem,

the limiting distribution function of $W_n \lim_{n\to\infty} P(W_n \leq w) = \underline{\hspace{1cm}}$

the limiting moment-generating function is $limit_{n\to\infty}M_{W_n}(t)=$

(10pts) 3. Let the r.v. X have the p.d.f. $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$, 0 < x < 1, where $\alpha, \beta > 0$ are known positive integers.

Find E[X] and Var[X].

Hint:
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 and $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$.

- (10 pts) 4. Let $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be the order statistics of a random sample $\{X_1, X_2, \cdots, X_n\}$ from the uniform distribution U(0,1).
 - (a) Find the probability density function of $X_{(1)}$.
 - (b) Use the results of (a) to find $E[X_{(1)}]$.
 - (c) Find the probability density function of $X_{(n)}$.
 - (d) Use the result of (c) to find $E[X_{(n)}]$.

Hint: Let $\{X_1, X_2, \dots, X_n\}$ be a random sample from U(0, 1), then $X_{(1)} = min\{X_1, X_2, \dots, X_n\}$ and $X_{(n)} = max\{X_1, X_2, \dots, X_n\}$.

(10pts) 5. Let X have the p.d.f. $f(x) = \beta x^{\beta-1}$, 0 < x < 1 for a given $\beta > 0$. Define $Y = -3\beta ln(X)$.

- (a) Compute the distribution function of Y, $P(Y \le y)$, for $0 < y < \infty$.
- (b) Find the moment-generating function $M_Y(t)$.
- (c) Find E(Y) and Var(Y).

(10pts) 6. In probability theory and statistics, skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. Similarly, kurtosis is a measure of the "peakness" of the probability distribution of a real-valued random variable. Let X be a continuous random variable having $E(X) = \mu$ and $Var(X) = \sigma^2$. Define

$$Skew(X) = E[(X - \mu)^3]/\sigma^3$$

$$Kurtosis(X) = E[(X - \mu)^4]/\sigma^4$$

Let $Z \sim N(0,1)$ and $W \sim N(1,4)$. Show your processes to solve $(\mathbf{a} \sim \mathbf{d})$.

- (a) Compute Skew(Z).
- (b) Compute Kurtosis(Z).
- (c) Compute Skew(W).
- (d) Compute Kurtosis(W).