Midterm Exam for CS3332(01), Spring 2015

	Name: $SN:$ $Gn:$ $Index:$
(30	Opts) 1. Choose the best (unique) solution for each of the following problems.
()(a) Let X be a gamma distribution with p.d.f. $f(x) = \frac{1}{16}x^2e^{-x/2}$, $0 \le x \le \infty$, then the moment-generating function is
	$(1) \frac{1}{(1-2t)^3}$, $(2) \frac{1}{(1-3t)^2}$, $(3) \frac{1}{1-2t}$, $(4) \frac{1}{1-3t}$, (5) none
()(b) Let X have a density function $f(x) = \frac{1}{2}e^{-x/2}$, $x \ge 0$, then the variance of X is
	(1) 2, (2) 4, (3) $\frac{1}{2}$, (4) $\frac{1}{4}$, (5) none
()(c) Let X have a density function $f(x) = \frac{1}{2}e^{-x/2}$, $x \ge 0$, then the median of X is
	(1) e^{-1} , (2) e^{-2} , (3) $2ln2$, (4) $(ln2)/2$, (5) none
()(d) Let X be a gamma distribution with p.d.f. $f(x) = \frac{1}{16}x^2e^{-x/2}$, $0 \le x \le \infty$, then the variance of X is
	(1) 3, (2) 6, (3) 12, (4) 16, (5) none
()(e) Let X be a χ^2 distribution whose moment-generating function $\phi(t) = \frac{1}{(1-2t)^2}$, $t < \frac{1}{2}$, then the variance Var(X) is
	(1) 1, (2) 2, (3) 4, (4) 8, (5) none
()(f) Let X be a χ^2 distribution whose moment-generating function $\phi(t) = \frac{1}{(1-2t)}$, $t < \frac{1}{2}$, then the first quartile of X is
	(1) $2\ln(\frac{4}{3})$, (2) $2\ln(\frac{2}{3})$, (3) 0.25, (4) 0.75, (5) none
()(g) Let $X \sim N(3,4)$, then the moment-generating function of X is
	(1) e^{3t+4t^2} , (2) e^{3t+2t^2} , (3) $\frac{1}{4-3e^t}$, (4) $\frac{1}{3-4e^t}$, (5) none
()(h) Let $X \sim N(3,4)$, then the median of X is
	(1) 1, (2) 2, (3) 3, (4) 4, (5) none
()(i) Let $Z \sim N(0,1)$ and define $X = 2Z + 3$, then $Var(X)$ equals
	(1) 1 (2) 2 (3) 3 (4) 4 (5) none

()(j) Let $X \sim N(3,4)$ and define Y = (X-3)/2, then $Var(Y^2)$ equals

(1) 1, (2) 2, (3) 3, (4) 4, (5) none

bf Answer:

5, 4, 3, 2, 1; 5, 4, 3, 2, 1

(40pts)2. Fill the following blanks.

(a)	Let A and B be independent events with $P(A) = 0.7$ and $P(B) = 0.2$, then
	$P(A \cap B) = \underline{\hspace{1cm}}$
	$P(A \cup B) = \underline{\hspace{1cm}}$

- (b) Let $X \sim b(50, 0.6)$, then $E(X) = \underline{\hspace{1cm}}$ $Var(X) = \underline{\hspace{1cm}}$ $M(t) = \underline{\hspace{1cm}}$
- (d) A random variable X has p.d.f. $f(x) = \frac{x+1}{2}, -1 < x < 1$. Then the median of $X = \underline{\hspace{1cm}}$
- (f) Let a random variable X have the Poisson distribution with variance 4. $E(X) = \underline{\hspace{1cm}}$ $M(t) = \underline{\hspace{1cm}}$
- (h) Let a random variable X have an exponential distribution with Var(X)=4. Then $E(X)=\underline{\hspace{1cm}}$ The moment-generating function $\phi_X(t)=\underline{\hspace{1cm}}$

- (10pts)3. A box contains four marbles numbered 1 through 4. The marbles are selected one at a time without replacement. A match occurs if marble numbered k is the kth marble selected. Let the event A_i , denote a match on the ith draw, i=1,2,3,4.
 - (a) Find $P(A_i)$, for i=1,2,3,4.
 - (b) Find $P(A_i \cap A_j)$, where $1 \le i < j \le 4$.
 - (c) Find $P(A_i \cap A_j \cap A_k)$, where $1 \le i < j < k \le 4$.
 - (d) Find $P(A_1 \cup A_2 \cup A_3 \cup A_4)$.

(10pts)4. Let the random variable X have a negative binomial distribution whose probability mass function (p.m.f.) is

$$f(x) = {\begin{pmatrix} x-1 \\ r-1 \end{pmatrix}} p^r (1-p)^{x-r}, \quad \forall \ x = r, \ r+1, \ r+2, \ \cdots$$

- (a) Show your procedure to find the moment-generating function M(t).
- (b) Show your procedure to find the expectation E(X).
- (c) Compute the variance Var(X).

Hint:
$$(1-\omega)^{-r} = \sum_{k=0}^{\infty} \begin{pmatrix} k+r-1 \\ r-1 \end{pmatrix} \omega^k$$

- (10pts)5. Write Simple Matlab Codes to plot each of the following probability mass functions with a given random variable X.
 - (a) $X \sim b(10, 0.8)$.
 - (b) X has a geometric distribution with the expectation E(X) = 4.
 - (c) X has a Poisson distribution with variance 4.