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Partial Solutions for h4/2014S: Sampling
Distributions

(1) Let X1 and X2 be two independent random variables, each with the same probability
distribution given as follows.

f(x) =
1

2
e−x/2, x ≥ 0

(a) Compute the probability distribution function of the new random variable Y =
X1 + X2.

(b) What type of probability distribution is your answer in (a)?

S1(a) φ1(t) = φ2(t) = 1
1−2t

, for t < 1
2
.

E
[
et(X1+X2)

]
=

∫ ∞

0

∫ ∞

0
et(x1+x2)f(x1)f(x2)dx1dx2

=
(∫ ∞

0
etx1f(x1)dx1

)(∫ ∞

0
etx2f(x2)dx2

)

= 1
(1−2t)2

Thus, fY (y) = 1
4
ye−y/2, 0 < y < ∞

S1(b) Y = X1 + X2 has a gamma distribution with parameters α = 2 and θ = 2 since
MY (t) = MX1(t) × MX2(t) = 1

1−2t
× 1

1−2t
= 1

(1−2t)2
.

(2) Let the moment-generating function of X be

φ(t) = e3t+2t2 , −∞ < t < ∞

(a) Find the mean E(X) and variance Var(X).

(b) Name the distribution of X.

(c) Write down the p.d.f f(x) for X.

S2(a) E(X) = 3 and V ar(X) = 4.

S2(b) X ∼ N(3, 4), that is, X has a normal distribution with mean 3 and variance 4.

S2(c) The p.d.f of X is f(x) = 1√
8π

e−(x−3)2/8, −∞ < x < ∞.

(3) Let X1 ∼ b(n1, p) and X2 ∼ b(n2, p) be independent r.v.s. Define Y = X1 + X2.
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(a) What is MY (t)?

(b) How is Y distributed?

S3(a) MY (t) = MX1(t)MX2(t) = (1 − p + pet)n1(1 − p + pet)n2 = (1 − p + pet)n1+n2

S3(b) Y ∼ b(n1 + n2, p).

(4) If X ∼ N(μ, σ2), show that Y = (aX + b) ∼ N(aμ + b, a2σ2), a �= 0.

S4 Without loss of generality (W.L.O.G.), let a > 0, then

P (Y ≤ y) = P (aX + b ≤ y) = P (X ≤ y−b
a

)

=
∫ (y−b)/a

−∞
1√

2πσ2
e−(x−μ)2/(2σ2)dx

then

f(y) = F ′(y) =
1√

2π(aσ)
e−[y−(aμ+b)]2/[2(aσ)2 ], −∞ < y < ∞

(5) The joint probability density function for two continuous random variables X and Y
is given as follows.

f(x, y) =

⎧⎪⎨
⎪⎩

βxy 0 < x < 2 and 0 < y < 4

0 elsewhere

(a) Determine the constant β to make it a joint p.d.f.

(b) Determine the conditional probability distribution function f(x|y).

(c) Compute the covariance between X and Y.

S5(a) β = 1
16

, fX(y) =
∫ 4
0

1
16

xydx = x
2
, for 0 < x < 2, fY (y) =

∫ 2
0

1
16

xydx = y
8
, for

0 < y < 4.

S5(b) f(x|y) = f(x,y)
f(y)

= x
2
, f(x, y) = xy

16
= x

2
× y

8
= fX(x)fY (y).

S5(c) Cov(X, Y ) = E[(X − μX)(Y − μY )], where

μx =
∫ 2

0
x · x

2
dx =

4

3

and

μy =
∫ 4

0
y · y

8
dy =

8

3
,
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Thus

Cov(X, Y ) = E[XY ] − μXμY =
∫ 2

0

∫ 4

0

1

16
x2y2dydx− 32

9
=

8 × 64

144
− 32

9
= 0.

Note that X and Y are uncorrelated.

(6) Show that the sum of n independent Poisson random variables with respective means
λ1, λ2, . . . , λn is Poisson with mean λ =

∑n
i=1 λi.

S6 Let Y =
n∑

i=1

Xi, then

E[etY ] = E[et
∑n

i=1Xi] =
∑

x1,x2,···,xn

[
e
∑n

i=1
(txi)

]
f(x1)f(x2) · · · f(xn)

=
∑

x1,x2,···,xn

Πn
i=1[e

txif(xi)] = Πn
i=1

(∑
xi

etxif(xi)

)

= Πn
i=1e

λi(et−1) = e[
∑n

i=1
λi](et−1)

Thus, Y has a Poisson distribution with mean λ =
∑n

i=1 λi.

(7) Let Zi ∼ N(0, 1), for 1 ≤ i ≤ 7 and define W =
∑7

i=1 Z2
i . Find P(1.69< W <14.07).

S7 Y ∼ χ2(7), then P (1.69 < W < 14.07) = P (W < 14.07) − P (W ≤ 1.69) = 0.95 −
0.025 = 0.925.

(8) Assume there are 100 obervations, denoted by xi, 1 ≤ i ≤ 100, and each is drawn
from a population with a continuous distribution in [0,2].

(a) Give the formula for the sample mean X and sample variance S2 in this problem.

(b) Compute the sample mean and sample variance for X.

(c) Try to give an approximate distribution for X as best as you can and explain
your reason.

(d) Compute the probability that the sample mean value is larger than 1.02. Note
that you can express your solution with the cumulative standard normal distri-
bution function

Φ(r) =
∫ r

−∞
1√
2π

e−x2/2dx

S8(a) X = 1
100

100∑
i=1

Xi, S2 = 1
99

100∑
i=1

(Xi − X)2.
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S8(b) E(Xi) =
∫ 2
0 (x · 1

2
)dx = 1, V ar(Xi) = E(X2

i ) − [E(Xi)]
2 =

∫ 2
0 (x2 · 1

2
)dx − 1 = 1

3
,

then
E(X) = 1

100

∑100
i=1 E(Xi) = 1

V ar(X) = 1
10000

∑100
i=1 V ar(Xi) = 1

300

S8(c) By C.L.T.
X − E(X)√

1
100

V ar(X1)
→ N(0, 1) in probability.

Then

P (X > 1.02) = P (10
√

3(X − 1) > 10
√

3(1.02 − 1)) = 1 − Φ(0.02 ∗ 10
√

3)

= Φ(−0.3464) ≈ 0.3645

(9) Let random() be a pseudo random number generator which can randomly generate
a real in [0, 1). Let X ∼ N(0, 1), and Y ∼ N(3, 16). Give algorithms to sample
(simulate) the distributions of X and Y , respectively.

S9 Let Ri ∼ U(0, 1) and R =
∑n

i=0 Ri, by C.L.T., we have

R − E(R)√
nV ar(R1)

→ N(0, 1) in probability

or
R/n − E(R1)√

V ar(R1)/n
→ N(0, 1) in probability

In application, if we choose n = 12, then

(
12∑
i=0

Ri) − 6 ≈ X ∼ N(0, 1)

(10) Let X1, X2, . . . , X30 be a random sample of size 30 from a Poisson distribution with
a mean 2/3. Approximate

(a) P (15 <
∑30

i=1 Xi ≤ 22).

(b) P (21 ≤ ∑30
i=1 Xi < 27).
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S10(a)

P (15 <
∑30

i=1 Xi ≤ 22) = P (15.5 ≤ ∑30
i=1 Xi ≤ 22.5)

= P ( (15.5−20)√
30×(2/3)

) ≤
∑30

i=1
Xi−20√

30×(2/3)
≤ (22.5−20)√

30×(2/3)
)

= P (−4.5√
20

≤
∑30

i=1
Xi−20√
20

) ≤ 2.5√
20

)

= Φ( 2.5√
20

) − Φ(−4.5√
20

) = Φ(0.5590) − Φ(−1.0062)

≈ 0.7088 − 0.1630 = 0.5458

S10(b)

P (21 ≤ ∑30
i=1 Xi < 27) = P ( (20.5−20)√

30×(2/3)
) ≤

∑30

i=1
Xi−20√

30×(2/3)
) ≤ (26.5−20)√

30×(2/3)
)

= P ( 0.5√
20

≤
∑30

i=1
Xi−20√
20

≤ 6.5√
20

)

= Φ( 6.5√
20

) − Φ( 0.5√
20

) = Φ(1.4534) − Φ(0.1118)

≈ 0.9259 − 0.5435 = 0.3824

(11) Let X1, X2, · · · , Xn be a random sample of an exponential distribution with mean θ,
that is, f(x) = 1

θ
e−x/θ, x > 0.

(a) Show that P (min(X1, X2, · · · , Xn) > 2) = e−2n/θ.

(b) Show that P (max(X1, X2, · · · , Xn) > 2) = 1 − (1 − e−2/θ)n.

(c) Find a minimum n such that P (min(X1, X2, · · · , Xn) > 2) ≤ 3% when θ = 2.

(d) Find a minimum n such that P (max(X1, X2, · · · , Xn) > 2) ≥ 90% when θ = 2.

S11(a)

P [min(X1, X2, · · · , Xn) > 2] = Πn
i=1P (Xi > 2) = Πn

i=1

[∫ ∞

2

1

θ
e−x/θdx

]

= Πn
i=1

[
e−2/θ

]
= e

−2n
θ
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S11(b)

P [max(X1, X2, · · · , Xn) > 2] = P (at least one Xi > 2) = 1 − Πn
i=1P (Xi ≤ 2)

= 1 − Πn
i=1

(∫ 2

0

1

θ
e−x/θdx

)
= 1 − [1 − e−2/θ]n

S11(c) Find a minimum n such that P (min(X1, X2, · · · , Xn) > 2) = e−2n/θ = e−2n/2 ≤
0.03, that is, e−n ≤ 0.03, or n ≥ �−ln(0.03) = 3.5066� = 4

S11(d) Find a minimum n such that P (max(X1, X2, · · · , Xn) > 2) = 1 − (1 − e−2/θ)n =
1 − [1 − e−2/2]n ≥ 0.9, that is, 1 − [1 − e−1]n ≥ 0.9 or [1 − e−1]n ≤ 0.1. In other
words, we want to find n such that (e−1 + (0.1)1/n) ≥ 1, or (0.1)1/n ≥ (1 − e−1), or
n ln(0.1) ≥ ln( e−1

e
). Thus, n ≥ 6.

(12) Let W1 < W2 < · · · < Wn be the order statistics of a random sample of zise n from
the uniform distribution U(0,1).

(a) Find the probability density function of W1.

(b) Find the probability density function of Wn.

(c) Use the result of (a) to find E(W1).

(d) Use the result of (b) to find E(Wn).

Solution:

Gr(y) = P (Wr ≤ y) =
∑n

k=r

(
n
k

)
[F (y)]k[1 − F (y)]n−k

=
∑n−1

k=r

(
n
k

)
[F (y)]k[1 − F (y)]n−k + [F (y)]n

Thus the p.d.f. of Wr could be derived as

gr(y) = Gr
′(y) =

n!

(r − 1)!(n − r)!
[F (y)]r−1[1 − F (y)]n−rf(y), a < y < b (1)

In particular,
g1(y) = n[1 − F (y)]n−1f(y), a < y < b

gn(y) = n[F (y)]n−1f(y), a < y < b
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(1) If Xi has a U(0,1) distribution, then E(Wr) = r
n+1

. In particular, g1(y) =

n(1−y)n−1, 0 < y < 1, E(W1) = 1
n+1

; gn(y) = nyn−1, 0 < y < 1, E(Wn) = n
n+1

.

(2) If Xj has an exponential distribution with mean 2, then g1(y) = ne−ny, y > 0
and E(W1) = 1

n
.

*(13) One of the most popular distributions used to model the lifetimes of electric com-
ponents is the Weibull distribution, whose probability density function is given by

f(t) = αtα−1e−tα , for t > 0, α > 0.

Determine for which values of α the hazard function of a Weibull random variable is
increasing, for which values it is decreasing, and for which values it is constant.

*S13 f ′(t) = α(α − 1)tα−2e−tα − α2t2α−2e−tα , thus,

f ′(t) > 0 if t <
(

α−1
α

)1/α

< 0 if t >
(

α−1
α

)1/α


