- I. (50 pts) Write Matlab codes to solve the following problems.
- (15 pts) 1. Approximate sin(1) by using Taylor expansion for f(x) = sin(x) with $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$ about x = 0 such that the accuracy is within 10^{-4} .
- (10 pts) 2. Apply LU decomposition with partial pivoting and back substitution to solve the following linear system of equations.

$$x + \frac{1}{2}y + \frac{1}{3}z + \frac{1}{4}w = 1$$

$$\frac{1}{2}x + \frac{1}{3}y + \frac{1}{4}z + \frac{1}{5}w = 1$$

$$\frac{1}{3}x + \frac{1}{4}y + \frac{1}{5}z + \frac{1}{6}w = 1$$

$$\frac{1}{4}x + \frac{1}{5}y + \frac{1}{6}z + \frac{1}{7}w = 1$$

(10 pts) 3. Find the characteristic polynomial of the matrix A given below and compare the roots of the characteristic equation of A with those obtained from the matlab command eig(A).

$$A = \begin{bmatrix} -5 & 2 & 1 \\ 2 & -5 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$

(15 pts) 4. Let $X \sim \chi^2(4)$ with the probability density $f(x) = \frac{1}{4}xe^{-x/2}$, $x \geq 0$. Find the 75th percentile of X, that is, β such that $\int_0^\beta f(x)dx = \frac{3}{4}$.

II. (40 pts) Answer the following questions.

(10 pts) 5. Give the nonlinear system of equations with variables x = X(1), y = X(2), z = X(3) that the following Matlab code attempts to solve.

```
n=3;
X=[1; 1; 1];
Nrun=10;
for k=1:Nrun
  F=[X(1)^3-10*X(1)+X(2)-X(3)+3; \dots]
     X(2)^3+10*X(2)-2*X(1)-2*X(3)-5; \dots
     X(1)+X(2)-10*X(3)+2*sin(X(3))+5;
  A = [3*X(1)^2-10,
                                              -1; ...
                             1,
               -2, 3*X(2)+10,
                                              -2; ...
                             1, -10+2*cos(X(3))];
            % Perturbation to avoid the near singularity
  dX = (A + s * eye(n)) \ F;
  X=X-dX;
end
format short
[X'; F']
            % Output solution and error (ideally F==0)
```

(10 pts) 6. Define $f(x) = \sqrt{x+2}$ for $x \in [0,3]$.

- (a) Show that f is a contractive mapping.
- (b) Find the fixed point of f.
- (20 pts) 7. Let $f:[a,b] \to R$ and given 3n+1 distinct points $a=x_0 < x_1 < \cdots < x_{3n} = b$. In no more than 50 words, discribe the difference among a cubic spline interpolant, Bezier curve, and B-spline curve fitting.

- III. (60 pts) Answer the following questions.
- (20 pts) 8. For $x \in (-1,1)$, define the Chebyshev polynomial of degree n by

$$T_n(x) = cos(ncos^{-1}x) \ \forall \ n \ge 0$$

Denote the inner product by $\langle T_n, T_m \rangle = \int_{-1}^1 T_n(x) T_m(x) \frac{1}{\sqrt{1-x^2}} dx$

- (a) Write down $T_n(x)$ in the polynomial format for $0 \le n \le 4$.
- **(b)** Show that $\langle T_n, T_m \rangle = 0$ if $n \neq m$.
- (c) Compute $\langle T_0, T_0 \rangle$, and $\langle T_n, T_n \rangle$ for $n \geq 1$.
- (d) Find all of the roots of $T_n(x) = 0$.
- (20 pts) 9. Using the nodes $x_0 = 2$, $x_1 = 2.5$, and $x_2 = 5$ to find a quadratic interpolating polynomial $P_2(x)$ for $f(x) = \frac{1}{x^2}$.
 - (a) Find the Lagrange polynomials $L_{2,0}(x)$, $L_{2,1}(x)$, and $L_{2,2}(x)$.
 - (b) Write $P_2(x)$ in form of Lagrange polynomials.
 - (c) Write $P_2(x)$ in the form of Newton divided difference.
 - (d) If $P_2(x) = \alpha_2 x^2 + \alpha_1 x + \alpha_0$, what are $\alpha_2, \alpha_1, \alpha_0$, respectively?
- (20 pts) 10. A natural cubic spline S on [0,2] is defined by

$$S(x) = \begin{cases} S_0(x) = a + bx + cx^2 + dx^3, & \text{if } 0 \le x < 1 \\ S_1(x) = 2 - (x - 1) - 3(x - 1)^2 + (x - 1)^3, & \text{if } 1 \le x \le 2 \end{cases}$$

Show your process to find a, b, c, and d, respectively.