Solutions for Test 1

1.
$$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

2(a)
$$\|\mathbf{x}\|_1 = 10$$
 and $\|\mathbf{x}\|_{\infty} = 5$. **2(b)** $\|B\|_1 = 25$ and $\|B\|_{\infty} = 26$.

3.

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$$

4

(a)
$$A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 6 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 1 & 6 \end{bmatrix}$ (c) $x_{10} = 55$

- **5(a)** Decompose A = LU, where A is unit lower $-\Delta$, U is upper $-\Delta$.
- **5(b)** Decompose A = LU, where A is $lower \Delta$, U is unit upper $-\Delta$.
- **5(c)** Let A be positive definite, decompose $A = LL^t$, where L is $lower \Delta$.

6(a)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 10 \\ 3 & 14 & 28 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}, \quad U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

- **6(b)** Use Gaussian Elimination with Partial Pivoting followed by Back Substitution to solve $A\mathbf{x}=\mathbf{b}$,
- **6(c)** $x = [2, 1, -1]^t$

- **7(b)** 3(n-1) flops
- 8 Show that $||A||_{\infty} \leq \max_{1\leq i\leq m} \left\{\sum_{j=1}^{n} |a_{ij}|\right\}$ and show the equality holds for \mathbf{x} with $x_j = sign(a_{Kj})$, where $\sum_{j=1}^{n} |a_{Kj}| = \max_{1\leq i\leq m} \left\{\sum_{j=1}^{n} |a_{ij}|\right\}$