1.(10%) Let

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ 8 \\ 3 \end{bmatrix}$$

Find the linear least squares solution for $A\mathbf{x} = \mathbf{b}$.

2.(20%) Give the solution for each of the following Matlab codes.

```
(a) format short; fzero(@(t)(t*t-2.6*t+1.44), 1.76)
```

- **(b)** fzero(@(x)(x*x-3.0*x+2.00), 0.36)
- (c) roots([1, 6, 8])
- (d) x=1.2; y=1.0; tol=0.001;
 Nrun=20; num=1; delta=1.0;
 while (++num < Nrun && delta > tol)
 y=x-(x^2-x+0.16)/(2*x-1);
 delta=abs(x-y);
 x=y;
 end
 x
- (e) x=1.96; delta=1.0; tol=0.00001;
 Nrun=30; num=0;
 while (++num<Nrun && delta>tol)
 y=(x*x+2)/3;
 delta=abs(y-x);
 x=y;
 end
 x

$$A = \begin{bmatrix} -3 & 1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Find the eigenvalues and corresponding eigenvectors for matrix A.
- (b) Give the spectrum decomposition for A.
- (c) Find the singular values for A.
- (d) Find the singular value decomposition for A.
- (e) Give the Matlab commands to verify solutions for (b) and (c).
- **4.(25%)** Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix.
 - (a) Show that H is symmetric.
 - (b) Show that H is orthogonal.
 - (c) Show that det(H) = -1.
 - (d) Find a Householder matrix H such that $H\mathbf{x} = \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$.
- **5.(10%)** Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigenvalues of $A \in \mathbb{R}^{n \times n}$, show that $tr(A^k) = \sum_{i=1}^n \lambda_i^k$.
- **6.(10%)** Let $A \in \mathbb{R}^{n \times n}$ is diagonalizable and that $U^{-1}AU = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ with $U = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ and $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$. Give an algorithm based on *power method* to find λ_1 and a corresponding eigenvector.