True-False Problems

November 6, 2017
StudentName: \qquad StudentNumber : \qquad Index: \qquad

Mark \bigcirc if the statement is true, otherwise mark \times.
(×) (1) $R^{2} \leq R^{3}$.
(\times) (2) It is possible to find a pair of 2-dimensional subspaes S and T of R^{3} such that $S \cap T=\{\mathbf{0}\}$.
(×) (3) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
(○) (4) If S and T are subspaces of a vector space V, then $S \cap T$ is a subspace of V.
(○) (5) If S and T are subspaces of a vector space V, then $S+T$ is a subspace of V.
(○) (6) If $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{n}$ are linearly independent, then they span R^{n}.
(\times) (7) If $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}$ span a vector space V, then they are linearly independent.
(○) (8) If $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are vectors in a vector space V and

$$
\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right)=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k-1}\right)
$$

then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linearly dependent.
(○) (9) If $A \in R^{m \times n}$, then A and A^{t} have the same rank.
(\times) (10) If $A \in R^{m \times n}$, then A and A^{t} have the same nullity.
(\bigcirc) (11) Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ be linearly independent vectors in R^{n} and let

$$
\mathbf{y}_{1}=\mathbf{x}_{2}+\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{3}+\mathbf{x}_{2}, \quad \mathbf{y}_{3}=\mathbf{x}_{3}+\mathbf{x}_{1}
$$

Then $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}$ are linearly independent.
(\times)(12) Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathrm{x}_{3}$ be linearly independent vectors in R^{n} and let

$$
\mathbf{y}_{1}=\mathbf{x}_{2}-\mathbf{x}_{1}, \quad \mathbf{y}_{2}=\mathbf{x}_{3}-\mathbf{x}_{2}, \quad \mathbf{y}_{3}=\mathbf{x}_{3}-\mathbf{x}_{1}
$$

Then $\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}$ are linearly independent.
(○) (13) $A \in R^{n \times n}$ and let $\operatorname{Null}(A)=\{0\}$. Then $\operatorname{rank}(A)=n$ and A is nonsingular.

