True-False Problems

November 6, 2017

StudentName : _____ *StudentNumber* : _____ *Index* : ____

Mark \bigcirc if the statement is true, otherwise mark \times .

(×) (1)
$$R^2 \leq R^3$$
.

- (×) (2) It is possible to find a pair of 2-dimensional subspaces S and T of R^3 such that $S \cap T = \{0\}$.
- (×) (3) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
- (O) (4) If S and T are subspaces of a vector space V, then $S \cap T$ is a subspace of V.
- ()) (5) If S and T are subspaces of a vector space V, then S + T is a subspace of V.
- (\bigcirc) (6) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent, then they span \mathbb{R}^n .
- (×) (7) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ span a vector space V, then they are linearly independent.
- (\bigcirc) (8) If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are vectors in a vector space V and

$$span(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k) = span(\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{k-1})$$

then $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly *dependent*.

- ()) (9) If $A \in \mathbb{R}^{m \times n}$, then A and A^t have the same rank.
- (×) (10) If $A \in \mathbb{R}^{m \times n}$, then A and A^t have the same nullity.
- (\bigcirc) (11) Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ be linearly independent vectors in \mathbb{R}^n and let

$$y_1 = x_2 + x_1, y_2 = x_3 + x_2, y_3 = x_3 + x_1$$

Then $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ are linearly *independent*.

(×) (12) Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ be linearly independent vectors in \mathbb{R}^n and let

$$y_1 = x_2 - x_1, y_2 = x_3 - x_2, y_3 = x_3 - x_1$$

Then $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ are linearly *independent*.

()) (13) $A \in \mathbb{R}^{n \times n}$ and let $Null(A) = \{0\}$. Then rank(A) = n and A is nonsingular.