H4: Orthogonality

- 1. Given $\mathbf{x} = [1, 1, 1, 1]^t$ and $\mathbf{y} = [8, 2, 2, 0]^t$.
 - (a) Determine the angle between x and y.
 - (b) Find the vector projection **p** of **x** onto **y**.
 - (c) Verify that $(\mathbf{x} \mathbf{p}) \perp \mathbf{y}$.
- **2.** Compute $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_{\infty}$ for each of the following vectors.

(a)
$$\mathbf{x} = [-3, 4, 0]^t$$
, (b) $\mathbf{x} = [-1, -1, 2]^t$

- **3.** Let $\mathbf{u} = [2, 3, 4]^t$, $\mathbf{v} = [1, \gamma, 1]^t$. Find γ such that \mathbf{u} and \mathbf{v} are orthogonal.
- 4. Let $\mathbf{x} = [1, 2, 3]^t$, $\mathbf{y} = [-2, 3, 1]^t$. Find the angle θ between \mathbf{x} and \mathbf{y} .
- **5.** Let $\mathbf{x} = [1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]^t$, $\mathbf{u} = [1, 0, 0, \cdots]^t$. Show that $(a) \|\mathbf{x}\|_2 = \frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$.
- **6.** Let $\mathbf{x} \in \mathbb{R}^n$ and show that

(a)
$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \|\mathbf{x}\|_{1}$$
, (b) $\|\mathbf{x}\|_{1} \le \sqrt{n} \|\mathbf{x}\|_{2}$, (c) $\|\mathbf{x}\|_{2} \le \sqrt{n} \|\mathbf{x}\|_{\infty}$

7. Sketch the set of points $\mathbf{x} = [x_1, x_2]^t \in \mathbb{R}^2$ such that

(a)
$$\|\mathbf{x}\|_2 = 1$$
, (b) $\|\mathbf{x}\|_1 = 1$, (c) $\|\mathbf{x}\|_{\infty} = 1$

8. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be an orthonormal basis for an inner product vector space V and let $\mathbf{x} = \mathbf{u}_1 + 2\mathbf{u}_2 + 2\mathbf{u}_3$ and $\mathbf{y} = \mathbf{u}_1 + 7\mathbf{u}_2$. Compute

(a)
$$\langle \mathbf{x}, \mathbf{y} \rangle$$
, (b) $\|\mathbf{x}\|_2$, $\|\mathbf{y}\|_2$, (c) the angle between \mathbf{x} and \mathbf{y}

- **9.** Find the best least squares fitting line for the data set $\{[-1,0]^t, [0,1]^t, [1,3]^t, [2,9]^t\}$ and plot your solution associated with the data points.
- 10. Let $\mathbf{x} = [1, 1, 3, 5]^t$ and let $Q_j \in \mathbb{R}^{4 \times 4}$ be orthogonal for $1 \leq j \leq 4$, find

(a)
$$||Q\mathbf{x}||_2$$
 and (b) $det(Q_1Q_2Q_3Q_4)$

Solutions for H4: Orthogonality

- 1. Since $\mathbf{x} = [1, 1, 1, 1]^t$, $\mathbf{y} = [8, 2, 2, 0]^t$, then $\|\mathbf{x}\|_2 = 2$, $\|\mathbf{y}\|_2 = 6\sqrt{2}$, and $\langle \mathbf{x}, \mathbf{y} \rangle = 12$, then
 - (a) $\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \times \|\mathbf{y}\|_2} = \frac{1}{\sqrt{2}}$, then $\theta = \frac{\pi}{4}$.
 - **(b)** $\mathbf{p} = \frac{\mathbf{y}\mathbf{y}^t}{\|\mathbf{y}\|_2^2} \mathbf{x} = \frac{1}{3} [4, 1, 1, 0]^t.$
 - (c) Verify $(\mathbf{x} \mathbf{p}) \perp \mathbf{y}$. by showing that $\langle \mathbf{x} \mathbf{p}, \mathbf{y} \rangle = 0$.
- **2(a)** $\|\mathbf{x}\|_1 = 7$, $\|\mathbf{x}\|_2 = 5$, $\|\mathbf{x}\|_{\infty} = 4$
- **2(b)** $\|\mathbf{x}\|_1 = 4$, $\|\mathbf{x}\|_2 = \sqrt{6}$, $\|\mathbf{x}\|_{\infty} = 2$
- 3. $\gamma = -2$
- 4. $\frac{\pi}{3}$
- **5.** Let $\mathbf{x} = [1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots]^t$, $\mathbf{u} = [1, 0, 0, \cdots]^t$. Show that $(a) \|\mathbf{x}\|_2 = \frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$.
- **6.** Let $|x_k| = ||\mathbf{x}||_{\infty}$, then show that
 - $(a) \ \|\mathbf{x}\|_{2}^{2} \leq \|\mathbf{x}\|_{1}^{2} \ (b) \ \|\mathbf{x}\|_{1}^{2} \leq n\|\mathbf{x}\|_{2}^{2} \ by Cauchy Schwarz \ inequality \ (c) \ \|\mathbf{x}\|_{2}^{2} \leq n\|\mathbf{x}\|_{\infty}^{2}$
- 7. (a) circle, (b) |x| + |y| = 1, (c) unit square boundary.
- **8.** (a) $\langle \mathbf{x}, \mathbf{y} \rangle = 15$, (b) $\|\mathbf{x}\|_2 = 3$, $\|\mathbf{y}\|_2 = 5\sqrt{2}$, (c) the angle between \mathbf{x} and \mathbf{y} is $\frac{\pi}{4}$.
- **9.** The best least squares fitting line for the data set $\{[-1,0]^t, [0,1]^t, [1,3]^t, [2,9]^t\}$ is y=2.9x+1.8
- 10. Let $\mathbf{x} = [1, 1, 3, 5]^t$ and let $Q_j \in \mathbb{R}^{4 \times 4}$ be orthogonal for $1 \leq j \leq 4$, then
 - (a) $||Q\mathbf{x}||_2 = 6$ and (b) $det(Q_1Q_2Q_3Q_4) = \pm 1$