H4: Orthogonality

1. Given $\mathbf{x}=[1,1,1,1]^{t}$ and $\mathbf{y}=[8,2,2,0]^{t}$.
(a) Determine the angle between \mathbf{x} and \mathbf{y}.
(b) Find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y}.
(c) Verify that $(\mathbf{x}-\mathbf{p}) \perp \mathbf{y}$.
2. Compute $\|\mathbf{x}\|_{1},\|\mathbf{x}\|_{2}$ and $\|\mathbf{x}\|_{\infty}$ for each of the following vectors.

$$
\text { (a) } \mathbf{x}=[-3,4,0]^{t}, \quad \text { (b) } \mathbf{x}=[-1,-1,2]^{t}
$$

3. Let $\mathbf{u}=[2,3,4]^{t}, \mathbf{v}=[1, \gamma, 1]^{t}$. Find γ such that \mathbf{u} and \mathbf{v} are orthogonal.
4. Let $\mathbf{x}=[1,2,3]^{t}, \mathbf{y}=[-2,3,1]^{t}$. Find the angle θ between \mathbf{x} and \mathbf{y}.
5. Let $\mathbf{x}=\left[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right]^{t}, \mathbf{u}=[1,0,0, \cdots]^{t}$. Show that (a) $\|\mathbf{x}\|_{2}=\frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$.
6. Let $\mathrm{x} \in R^{n}$ and show that
(a) $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$,
(b) $\|\mathbf{x}\|_{1} \leq \sqrt{n}\|\mathbf{x}\|_{2}$,
(c) $\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty}$
7. Sketch the set of points $\mathbf{x}=\left[x_{1}, x_{2}\right]^{t} \in R^{2}$ such that

$$
\text { (a) }\|\mathbf{x}\|_{2}=1, \quad \text { (b) } \quad\|\mathbf{x}\|_{1}=1, \quad \text { (c) } \quad\|\mathbf{x}\|_{\infty}=1
$$

8. Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ be an orthonormal basis for an inner product vector space V and let $\mathbf{x}=\mathbf{u}_{1}+2 \mathbf{u}_{2}+2 \mathbf{u}_{3}$ and $\mathbf{y}=\mathbf{u}_{1}+7 \mathbf{u}_{2}$. Compute

$$
\text { (a) }\langle\mathbf{x}, \mathbf{y}\rangle, \quad \text { (b) }\|\mathbf{x}\|_{2},\|\mathbf{y}\|_{2}, \quad \text { (c) the angle between } \mathbf{x} \text { and } \mathbf{y}
$$

9. Find the best least squares fitting line for the data set $\left\{[-1,0]^{t},[0,1]^{t},[1,3]^{t},[2,9]^{t}\right\}$ and plot your solution associated with the data points.
10. Let $\mathbf{x}=[1,1,3,5]^{t}$ and let $Q_{j} \in R^{4 \times 4}$ be orthogonal for $1 \leq j \leq 4$, find

$$
\text { (a) }\|Q \mathbf{x}\|_{2} \text { and } \text { (b) } \operatorname{det}\left(Q_{1} Q_{2} Q_{3} Q_{4}\right)
$$

Solutions for H4: Orthogonality

1. Since $\mathbf{x}=[1,1,1,1]^{t}, \mathbf{y}=[8,2,2,0]^{t}$, then $\|\mathbf{x}\|_{2}=2,\|\mathbf{y}\|_{2}=6 \sqrt{2}$, and $\langle\mathbf{x}, \mathbf{y}\rangle=12$, then
(a) $\cos \theta=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|_{2} \times\|\mathbf{y}\|_{2}}=\frac{1}{\sqrt{2}}$, then $\theta=\frac{\pi}{4}$.
(b) $\mathbf{p}=\frac{\mathbf{y y}^{t}}{\|\mathbf{y}\|_{2}^{2}} \mathbf{x}=\frac{1}{3}[4,1,1,0]^{t}$.
(c) Verify $(\mathbf{x}-\mathbf{p}) \perp \mathbf{y}$. by showing that $\langle\mathbf{x}-\mathbf{p}, \mathbf{y}\rangle=0$.

2(a) $\|\mathbf{x}\|_{1}=7,\|\mathbf{x}\|_{2}=5,\|\mathbf{x}\|_{\infty}=4$
$\mathbf{2 (b)}\|\mathbf{x}\|_{1}=4,\|\mathbf{x}\|_{2}=\sqrt{6},\|\mathbf{x}\|_{\infty}=2$
3. $\gamma=-2$
4. $\frac{\pi}{3}$
5. Let $\mathbf{x}=\left[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right]^{t}, \mathbf{u}=[1,0,0, \cdots]^{t}$. Show that $(a)\|\mathbf{x}\|_{2}=\frac{2}{\sqrt{3}}$ and (b) the angle between \mathbf{x} and \mathbf{u} is $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$.
6. Let $\left|x_{k}\right|=\|\mathbf{x}\|_{\infty}$, then show that
(a) $\|\mathbf{x}\|_{2}^{2} \leq\|\mathbf{x}\|_{1}^{2}$ (b) $\|\mathbf{x}\|_{1}^{2} \leq n\|\mathbf{x}\|_{2}^{2}$ byCauchy-Schwarz inequality $(c)\|\mathbf{x}\|_{2}^{2} \leq n\|\mathbf{x}\|_{\infty}^{2}$
7. (a) circle, (b) $|x|+|y|=1$, (c) unit square boundary.
8. $(a)\langle\mathbf{x}, \mathbf{y}\rangle=15,(b)\|\mathbf{x}\|_{2}=3, \quad\|\mathbf{y}\|_{2}=5 \sqrt{2},(c)$ the angle between \mathbf{x} and \mathbf{y} is $\frac{\pi}{4}$.
9. The best least squares fitting line for the data set $\left\{[-1,0]^{t},[0,1]^{t},[1,3]^{t},[2,9]^{t}\right\}$ is $y=2.9 x+1.8$
10. Let $\mathbf{x}=[1,1,3,5]^{t}$ and let $Q_{j} \in R^{4 \times 4}$ be orthogonal for $1 \leq j \leq 4$, then
(a) $\|Q \mathbf{x}\|_{2}=6$ and
(b) $\operatorname{det}\left(Q_{1} Q_{2} Q_{3} Q_{4}\right)= \pm 1$

