H3: Vector Space and Linear Transform

Let (S, \oplus, \odot) be a set with the operation $\mathbf{x} \oplus \mathbf{y}$ being defined for $\mathbf{x}, \mathbf{y} \in S$, and $\alpha \odot \mathbf{x}$ for $\alpha \in T$ and $\mathbf{x} \in S$. Under the definitions for $(\mathbf{1} \sim \mathbf{3})$, determine if (S, \oplus, \odot) is a vector space over T.
(○)(1) Let $S=R^{+}=\{r \in R \mid r>0\}, T=R$, define $x \oplus y=x y$ and $k \odot x=x^{k}$.
$(\bigcirc)(2)$ Let $S=\{[1, x] \mid x \in R\}, T=R$, define $[1, x] \oplus[1, y]=[1, x+y]$ and $c \odot[1, x]=$ $[1, c x]$.
$(\times)(\mathbf{3})$ Let $S=R^{2}, T=R$, define $\mathbf{x} \oplus \mathbf{y}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \oplus\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+y_{1}+1 \\ x_{2}+y_{2}+1\end{array}\right]$ and $c \odot\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c x \\ c y\end{array}\right]$.
(4) Let $\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$. Show that a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ such that $\mathbf{b}=\sum_{i=1}^{3} c_{i} \mathbf{v}_{i}$ has $\left[c_{1}, c_{2}, c_{3}\right]=[1,1,2]$.
(5) Express $\mathbf{x}=[6,3,1]$ as a linear combination of $\mathbf{u}=[1,1,1], \mathbf{v}=[1,1,0], \mathbf{w}=[1,0,0]$. i.e., show that $\mathbf{x}=\mathbf{u}+2 \mathbf{v}+3 \mathbf{w}$
(6) Prove that $\left\{[3,1,-4]^{t},[2,5,6]^{t},[1,4,8]^{t}\right\}$ is a basis for R^{3}. Hint:

Let $A=[3,1,4 ; 2,5,6 ; 1,4,8]$; and show that $\operatorname{det}(A)$ is not equal to 0 .
(7) Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^{3}$, and let $L: R^{3} \rightarrow R^{2}$ be a linear transformation such that $L(\mathbf{x})=$ $[1,0]^{t}, L(\mathbf{y})=[0,1]^{t}, L(\mathbf{z})=[1,-1]^{t}$. Then $L(2 \mathbf{x}-3 \mathbf{y}+4 \mathbf{z})=2 L(\mathbf{x})-3 L(\mathbf{y})+4 L(\mathbf{z})=$ $[6,-7]^{t}$.
(8) Let $L: R^{3} \rightarrow R^{2}$ be a linear transformation such that $L\left([1,0,0]^{t}\right)=[1,1]^{t}, L\left([0,1,0]^{t}\right)=$ $[1,-1]^{t}, L\left([0,0,1]^{t}\right)=[1,0]^{t}$. Then $\operatorname{Ker}(L)=\left\{\alpha[1,1,-2]^{t}\right\}=\operatorname{span}\left([1,1,-2]^{t}\right)$

