H2: Determinants

(1)
$$A = \begin{bmatrix} 2 & 5 & 1 \\ 1 & 0 & -1 \\ 4 & 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 2 & 3 \end{bmatrix}$

(a) Show that det(A) = -14, det(B) = 0, det(C) = 1

- (b) Find the adjoints of matrices A, B, C, respectively.
- (c) Use Cramer's rule to find A^{-1} and C^{-1} , respectively.

											[1	6	11	16	21]
(2) Let <i>D</i> =	2	4	3	1		1	1	2	3		$ _2$	7	12	17	22
	0	5	6	3		2	3	5	6			1	12	17	
						3					3	8	13	18	23
	-1	2	4	-2		3	3	7	9		4	9	14	19	24
	7	0	1	3		3	5	6	10			Ū		10	
											5	10	15	20	25

(a) Show that det(D) = 340, det(E) = 1, det(F) = 0

- (3) Let $A \in \mathbb{R}^{n \times n}$, if there exists an $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n such that $A\mathbf{x} = \lambda \mathbf{x}$. λ is called an *eigenvalue*. For a small $n \leq 3$, we can directly compute the eigenvalues of a matrix A by solving the *n*-degree characteristic polynomial equation $det(\lambda I A) = 0$.
 - (a) Give the characteristic polynomial equation of matrices A, B, and C given in problem (1).
 - (b) Solve the polynomial equations in part (a).
- (4) Let $P \in \mathbb{R}^{n \times n}$. If $P^2 = P$ and $P \neq I$, show that det(P) = 0.
- (5) Let $H \in \mathbb{R}^{n \times n}$. If $H^2 = I$, then det(H) = 1 or -1. Find an $H \neq \pm I$ such that det(H) = -1.

(*Hint*: a Householder matrix, $H = I - 2\mathbf{u}\mathbf{u}^t$, where $\|\mathbf{u}\|_2 = 1$)

- (4) Let $P \in \mathbb{R}^{n \times n}$. If $P^2 = P$ and $P \neq I$, show that det(P) = 0.
- (**Proof**) By contradiction, suppose that $det(P) \neq 0$, then P is invertible, then $P^2 = P \rightarrow P(P-I) = O$ implies that P I = O, which contradicts $P \neq I$.
- (5) Let $H \in \mathbb{R}^{n \times n}$. If $H^2 = I$, then det(H) = 1 or -1. Find an $H \neq \pm I$ such that det(H) = -1.

(*Hint*: a Householder matrix, $H = I - 2\mathbf{u}\mathbf{u}^t$, where $\|\mathbf{u}\|_2 = 1$)

(Ans) Let $\mathbf{u} = [1/2, \sqrt{3}/2]^t$, then $\|\mathbf{u}\|_2 = 1$, and then $H = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ & & \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$.