Cholesky Algorithm

Theorem: Every positive definitive matrix A can be decomposed as $A=L L^{t}$, where L is lower $-\Delta$.

Algorithm: $A \in R^{n \times n}, A=L L^{t}, A$ is positive definite and L is lower $-\Delta$.

$$
\text { for } j=0,1, \cdots, n-1
$$

$$
\begin{aligned}
L_{j j} & \leftarrow\left[A_{j j}-\sum_{k=0}^{j-1} L_{j k}^{2}\right]^{1 / 2} \\
\text { for } i & =j+1, j+2, \cdots, n-1 \\
L_{i j} & \leftarrow\left[A_{i j}-\sum_{k=0}^{j-1} L_{i k} L_{j k}\right] / L_{j j}
\end{aligned}
$$

endfor
endfor

$$
\begin{gathered}
C=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right]=L_{1} L_{1}^{t} \\
A=\left[\begin{array}{ccc}
9 & 3 & -3 \\
3 & 17 & 3 \\
-3 & 3 & 27
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
1 & 4 & 0 \\
-1 & 1 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right]=L_{2} L_{2}^{t}
\end{gathered}
$$

