Vector Norms

Definition: A vector norm on R^{n} is a function

$$
\tau: R^{n} \rightarrow R^{+}=\{x \geq 0 \mid x \in R\}
$$

that satisfies
(1) $\tau(\mathrm{x})>0 \quad \forall \mathrm{x} \neq \mathbf{0}, \tau(\mathbf{0})=0$
(2) $\tau(c \mathbf{x})=|c| \tau(\mathbf{x}) \forall c \in R, \mathbf{x} \in R^{n}$
(3) $\tau(\mathbf{x}+\mathbf{y}) \leq \tau(\mathbf{x})+\tau(\mathbf{y}) \forall \mathbf{x}, \mathbf{y} \in R^{n}$

Hölder norm (p-norm) $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1$.
$\mathbf{(} \mathbf{p}=\mathbf{1})\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Mahattan or City-block distance)
$\mathbf{(p = 2)}\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$ (Euclidean distance)
$(\mathbf{p}=\infty)\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}$ (∞-norm)

Matrix Norms

Definition: A matrix norm on $R^{m \times n}$ is a function

$$
\tau: R^{m \times n} \rightarrow R^{+}=\{x \geq 0 \mid x \in R\}
$$

that satisfies
(1) $\tau(A)>0 \quad \forall A \neq O, \tau(O)=0$
(2) $\tau(c A)=|c| \tau(A) \forall c \in R, A \in R^{m \times n}$
(3) $\tau(A+B) \leq \tau(A)+\tau(B) \quad \forall A, B \in R^{m \times n}$

Consistency Property: $\tau(A B) \leq \tau(A) \tau(B) \quad \forall A, B$
(a) $\tau(A)=\max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$
(b) $\|A\|_{F}=\left[\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right]^{1 / 2}$ (Fröbenius norm)

Subordinate Matrix Norm: $\|A\|=\max _{\|\mathbf{x}\| \neq \mathbf{0}}\{\|A \mathbf{x}\| /\|\mathbf{x}\|\}$
(1) If $A \in R^{m \times n}$, then $\|A\|_{1}=\max _{1 \leq j \leq n}\left(\sum_{i=1}^{m}\left|a_{i j}\right|\right)$
(2) If $A \in R^{m \times n}$, then $\|A\|_{\infty}=\max _{1 \leq i \leq m}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right)$
(3) Let $A \in R^{n \times n}$ be real symmetric, then $\|A\|_{2}=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, where $\lambda_{i} \in \lambda(A)$

Theorem: Let $A=\left[a_{i j}\right] \in R^{m \times n}$, and define $\|A\|_{1}=\operatorname{Max}_{\|\mathbf{u}\|_{1}=1}\left\{\|A \mathbf{u}\|_{1}\right\}$. Show that

$$
\|A\|_{1}=\operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}
$$

(Proof) Let $\sum_{i=1}^{m}\left|a_{i K}\right|=\operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}$, for any $\mathbf{x} \in R^{n}$ with $\|\mathbf{x}\|_{1}=1$, we have

$$
\begin{aligned}
\|A \mathbf{x}\|_{1} & =\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j} x_{j}\right| \\
& =\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right| \cdot\left|x_{j}\right| \\
& =\sum_{j=1}^{n}\left|x_{j}\right|\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\} \\
& \leq \sum_{j=1}^{n}\left|x_{j}\right|\left\{\sum_{i=1}^{m}\left|a_{i K}\right|\right\} \\
& =\left\{\sum_{j=1}^{n}\left|x_{j}\right|\right\}\left\{\sum_{i=1}^{m}\left|a_{i K}\right|\right\} \\
& =\|\mathbf{x}\|_{1}\left\{\sum_{i=1}^{m}\left|a_{i K}\right|\right\} \\
& =\sum_{i=1}^{m}\left|a_{i K}\right|
\end{aligned}
$$

Thus,

$$
\operatorname{Max}_{\|\mathbf{u}\|_{1}=1}\left\{\|A \mathbf{u}\|_{1}\right\} \leq \operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{m}\left|a_{i j}\right|\right\}=\sum_{i=1}^{m}\left|a_{i K}\right| \quad \text { for a } K, \quad 1 \leq K \leq m
$$

In particular, when $\mathbf{x} \in R^{n}$ is selected as $\mathbf{x}=\mathbf{e}_{K}$, that is, $x_{K}=1$, and $x_{i}=0 \forall 1 \leq$ $i \leq n, i \neq K$, then the above equality holds, which completes the proof.

Theorem: Let $A=\left[a_{i j}\right] \in R^{m \times n}$, and define $\|A\|_{\infty}=\operatorname{Max}_{\|\mathbf{u}\|_{\infty}=1}\left\{\|A \mathbf{u}\|_{\infty}\right\}$. Show that

$$
\|A\|_{\infty}=\operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}
$$

(Proof) Let $\sum_{j=1}^{n}\left|a_{K j}\right|=\operatorname{Max} x_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}$, for any $\mathbf{x} \in R^{n}$ with $\|\mathbf{x}\|_{\infty}=1$, we have

$$
\begin{aligned}
\|A \mathbf{x}\|_{\infty} & =\operatorname{Max}_{1 \leq i \leq m}\left\{\left|\sum_{j=1}^{n} a_{i j} x_{j}\right|\right\} \\
& \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right| \cdot\left|x_{j}\right|\right\} \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\|\mathbf{x}\|_{\infty}\right\} \\
& \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}=\sum_{j=1}^{n}\left|a_{K j}\right|
\end{aligned}
$$

Thus, $\|A\|_{\infty}=\operatorname{Max}_{\|\mathbf{u}\|_{\infty}=1}\left\{\|A \mathbf{u}\|_{\infty}\right\} \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}$.
In particular, if we pick up $\mathbf{y} \in R^{n}$ such that $y_{j}=\operatorname{sign}\left(a_{K j}\right), \forall 1 \leq j \leq n$, then $\|\mathbf{y}\|_{\infty}=1$, and $\|A \mathbf{y}\|_{\infty}=\sum_{j=1}^{n}\left|a_{K j}\right|$, which completes the proof.

Theorem: Let $A=\left[a_{i j}\right] \in R^{n \times n}$, and define $\|A\|_{2}=\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}\right\}$. Show that

$$
\left.\|A\|_{2}=\sqrt{\rho\left(A^{t} A\right)}=\sqrt{\text { maximum eigenvalue of } A^{t} A} \quad \text { (spectral radius }\right)
$$

(Proof) Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be eigenvalues and their corresponding unit eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ of matrix $A^{t} A$, that is,

$$
\left(A^{t} A\right) \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad \text { and } \quad\left\|\mathbf{u}_{i}\right\|_{2}=1 \quad \forall 1 \leq i \leq n .
$$

Since $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ must be an orthonormal basis based on spectrum decomposition theorem, for any $\mathbf{x} \in R^{n}$, we have $\mathbf{x}=\sum_{i=1}^{n} c_{i} \mathbf{u}_{i}$. Then

$$
\begin{aligned}
\|A\|_{2} & =\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}\right\} \\
& =\sqrt{\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}^{2}\right\}} \\
& =\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\sqrt{\mathbf{x}^{t} A^{t} A \mathbf{x}}\right\} \\
& =\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\sqrt{\left|\sum_{i=1}^{n} \lambda_{i} c_{i}^{2}\right|}\right\} \\
& \leq \operatorname{Max}_{1 \leq j \leq n}\left\{\sqrt{\left|\lambda_{j}\right|}\right\}
\end{aligned}
$$

The equality holds if $\left|\lambda_{1}\right|=\operatorname{Max}_{1 \leq j \leq n}\left|\lambda_{j}\right|$ and $\mathbf{u}_{1}=\mathbf{e}_{1}$ is selected and $\mathbf{u}_{j}=\mathbf{0}$ for $2 \leq j \leq n$.

Theorem: Let $A \in R^{n \times n}$ and $A^{t}=A$, show that the eigenvectors corresponding to dintinct eigenvalues are orthogonal.
(Proof) Let λ and μ be two distinct eigenvalues of A with corresponding eigenvectors \mathbf{x} and \mathbf{y}, then we have

$$
A \mathbf{x}=\lambda \mathbf{x} \quad \rightarrow \quad \mathbf{y}^{t} A \mathbf{x}=\lambda \mathbf{y}^{t} \mathbf{x}=\lambda\langle\mathbf{y}, \mathbf{x}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle
$$

and

$$
A \mathbf{y}=\mu \mathbf{y} \quad \rightarrow \quad \mathbf{x}^{t} A \mathbf{y}=\mu \mathbf{x}^{t} \mathbf{y}=\mu\langle\mathbf{x}, \mathbf{y}\rangle=\mu\langle\mathbf{y}, \mathbf{x}\rangle
$$

Since $A^{t}=A$, then $\left(\mathbf{y}^{t} A \mathbf{x}\right)^{t}=\mathbf{x}^{t} A^{t} \mathbf{y}=\mathbf{x}^{t} A \mathbf{y}$, thus $\lambda\langle\mathbf{x}, \mathbf{y}\rangle=\mu\langle\mathbf{x}, \mathbf{y}\rangle$, which implies that $(\lambda-\mu)\langle\mathbf{x}, \mathbf{y}\rangle=0$ because $\lambda \neq \mu$, and hence $\langle\mathbf{x}, \mathbf{y}\rangle=0$ or say, \mathbf{x} and \mathbf{y} are orthogonal.
7. Let $b=\left[\begin{array}{c}1 \\ -5 \\ 4\end{array}\right], C=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2\end{array}\right]$. Writing a single Matlab command to solve
each of the following questions for $\mathbf{a} \sim \mathbf{h}$ and answer the questions for $\mathbf{i} \sim \mathbf{h}$.
(a) Randomly generate a 3 by 3 matrix A whose elements are integers in $[0,10)$. ($\mathrm{A}=\mathrm{fix}\left(10^{*}\right.$ random('unif', $\mathbf{0 , 1 , 3 , 3)))}$
(b) Input vector b.

$$
(b=[1 ;-5 ; 4])
$$

(c) Solve the linear system $A x=b$ for x.

$$
(x=A \backslash b)
$$

(d) Input matrix C given above.

$$
(C=[-2,1,0 ; 1,-2,0 ; 0,0,2])
$$

(e) Compute the characteristic polynomial for $C \cdot \mathbf{p}=\mathbf{p o l y}(\mathbf{C})$
(f) Compute the eigenvalues and eigenvectors of $C .[\mathbf{U}, \mathbf{D}]=\operatorname{eig}(\mathbf{C})$
(g) Compute the trace of matrix C. trace(C)
(h) Compute the rank of matrix C. $\operatorname{rank}(C)$
(i) Compute the $L U$ - decomposition of the matrix C. $[\mathbf{L}, \mathbf{U}, \mathbf{P}]=\mathbf{l} \mathbf{u}(\mathbf{C})$
(j) Compute the $Q R-$ factorization of the matrix C. $[\mathbf{Q}, \mathbf{R}]=\mathbf{q r}(\mathbf{C})$
(k) What is the result of (e)? $\mathbf{p}=[\mathbf{1}, \mathbf{2},-\mathbf{5},-\mathbf{6}]$
(l) What is the result of (f)? $\mathbf{- 3}, \mathbf{- 1}, \mathbf{2}$, also see problem 4 for the corresponding eigenvectors.
(m) What is the result of (g)? -2
(n) What is the result of (h)? $\mathbf{3}$
(o) What is the result of (i)?
(p) What is the result of (\mathbf{j})?

