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Vector Norms

Definition: A vector norm on Rn is a function

τ : Rn → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(x) > 0 ∀ x �= 0, τ(0) = 0

(2) τ(cx) = |c|τ(x) ∀ c ∈ R, x ∈ Rn

(3) τ(x + y) ≤ τ(x) + τ(y) ∀ x,y ∈ Rn

Hölder norm (p-norm) ‖x‖p = (
∑n

i=1 |xi|p)1/p for p ≥ 1.

(p=1) ‖x‖1 =
∑n

i=1 |xi| (Mahattan or City-block distance)

(p=2) ‖x‖2 = (
∑n

i=1 |xi|2)1/2
(Euclidean distance)

(p=∞) ‖x‖∞ = max1≤i≤n{|xi|} (∞-norm)
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Matrix Norms

Definition: A matrix norm on Rm×n is a function

τ : Rm×n → R+ = {x ≥ 0| x ∈ R}

that satisfies

(1) τ(A) > 0 ∀ A �= O, τ(O) = 0

(2) τ(cA) = |c|τ(A) ∀ c ∈ R, A ∈ Rm×n

(3) τ(A + B) ≤ τ(A) + τ(B) ∀ A, B ∈ Rm×n

Consistency Property: τ(AB) ≤ τ(A)τ(B) ∀ A, B

(a) τ(A) = max{|aij | | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

(b) ‖A‖F =
[∑m

i=1

∑n
j=1 a2

ij

]1/2
(Fröbenius norm)

Subordinate Matrix Norm: ‖A‖ = max‖x‖�=0{‖Ax‖/‖x‖}

(1) If A ∈ Rm×n, then ‖A‖1 = max1≤j≤n (
∑m

i=1 |aij|)

(2) If A ∈ Rm×n, then ‖A‖∞ = max1≤i≤m

(∑n
j=1 |aij |

)

(3) Let A ∈ Rn×n be real symmetric, then ‖A‖2 = max1≤i≤n|λi|, where λi ∈ λ(A)
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Theorem: Let A = [aij ] ∈ Rm×n, and define ‖A‖1 = Max‖u‖1=1{‖Au‖1}. Show that

‖A‖1 = Max1≤j≤n

{
m∑

i=1

|aij|
}

(Proof) Let
∑m

i=1 |aiK | = Max1≤j≤n {∑m
i=1 |aij|}, for any x ∈ Rn with ‖x‖1 = 1, we have

‖Ax‖1 =
∑m

i=1 |
∑n

j=1 aijxj |

≤ ∑m
i=1

∑n
j=1 |aijxj |

=
∑n

j=1

∑m
i=1 |aij| · |xj|

=
∑n

j=1 |xj |{∑m
i=1 |aij|}

≤ ∑n
j=1 |xj |{∑m

i=1 |aiK |}

= {∑n
j=1 |xj |}{∑m

i=1 |aiK |}

= ‖x‖1{∑m
i=1 |aiK |}

=
∑m

i=1 |aiK |
Thus,

Max‖u‖1=1{‖Au‖1} ≤ Max1≤j≤n

{
m∑

i=1

|aij |
}

=
m∑

i=1

|aiK | for a K , 1 ≤ K ≤ m.

In particular, when x ∈ Rn is selected as x = eK , that is, xK = 1, and xi = 0 ∀ 1 ≤
i ≤ n, i �= K, then the above equality holds, which completes the proof.
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Theorem: Let A = [aij ] ∈ Rm×n, and define ‖A‖∞ = Max‖u‖∞=1{‖Au‖∞}. Show that

‖A‖∞ = Max1≤i≤m

⎧⎨
⎩

n∑
j=1

|aij |
⎫⎬
⎭

(Proof) Let
n∑

j=1

|aKj| = Max1≤i≤m

⎧⎨
⎩

n∑
j=1

|aij |
⎫⎬
⎭, for any x ∈ Rn with ‖x‖∞ = 1, we have

‖Ax‖∞ = Max1≤i≤m

{
|∑n

j=1 aijxj |
}

≤ Max1≤i≤m

{∑n
j=1 |aij | · |xj |

}
≤ Max1≤i≤m

{∑n
j=1 |aij|‖x‖∞

}

≤ Max1≤i≤m

{∑n
j=1 |aij |

}
=

∑n
j=1 |aKj|

Thus, ‖A‖∞ = Max‖u‖∞=1{‖Au‖∞} ≤ Max1≤i≤m

⎧⎨
⎩

n∑
j=1

|aij|
⎫⎬
⎭.

In particular, if we pick up y ∈ Rn such that yj = sign(aKj), ∀ 1 ≤ j ≤ n, then
‖y‖∞ = 1, and ‖Ay‖∞ =

∑n
j=1 |aKj|, which completes the proof.
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Theorem: Let A = [aij ] ∈ Rn×n, and define ‖A‖2 = Max‖x‖2=1{‖Ax‖2}. Show that

‖A‖2 =
√

ρ(AtA) =
√

maximum eigenvalue of AtA (spectral radius)

(Proof) Let λ1, λ2, · · · , λn be eigenvalues and their corresponding unit eigenvectors
u1, u2, · · · , un of matrix AtA, that is,

(AtA)ui = λiui and ‖ui‖2 = 1 ∀ 1 ≤ i ≤ n.

Since u1, u2, · · · , un must be an orthonormal basis based on spectrum decomposition

theorem, for any x ∈ Rn, we have x =
n∑

i=1

ciui. Then

‖A‖2 = Max‖x‖2=1{‖Ax‖2}

=
√

Max‖x‖2=1{‖Ax‖2
2}

= Max‖x‖2=1{
√

xtAtAx}

= Max‖x‖2=1{
√√√√|

n∑
i=1

λic
2
i |}

≤ Max1≤j≤n{
√
|λj|}

The equality holds if |λ1| = Max1≤j≤n|λj| and u1 = e1 is selected and uj = 0 for

2 ≤ j ≤ n.
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Theorem: Let A ∈ Rn×n and At = A, show that the eigenvectors corresponding to
dintinct eigenvalues are orthogonal.

(Proof) Let λ and μ be two distinct eigenvalues of A with corresponding eigenvectors x
and y, then we have

Ax = λx → ytAx = λytx = λ〈y,x〉 = λ〈x,y〉

and
Ay = μy → xtAy = μxty = μ〈x,y〉 = μ〈y,x〉

Since At = A, then (ytAx)t = xtAty = xtAy, thus λ〈x,y〉 = μ〈x,y〉, which implies
that (λ − μ)〈x,y〉 = 0 because λ �= μ, and hence 〈x,y〉 = 0 or say, x and y are
orthogonal.
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7. Let b =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

−5

4

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2 1 0

1 −2 0

0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
. Writing a single Matlab command to solve

each of the following questions for a ∼ h and answer the questions for i ∼ h.

(a) Randomly generate a 3 by 3 matrix A whose elements are integers in [0, 10).
(A = fix(10*random(’unif’,0,1,3,3)))

(b) Input vector b.

(b = [1; -5; 4])

(c) Solve the linear system Ax = b for x.

(x = A\b)

(d) Input matrix C given above.

(C = [-2,1,0; 1,-2,0; 0,0,2])

(e) Compute the characteristic polynomial for C. p=poly(C)

(f) Compute the eigenvalues and eigenvectors of C. [U, D]=eig(C)

(g) Compute the trace of matrix C. trace(C)

(h) Compute the rank of matrix C. rank(C)

(i) Compute the LU − decomposition of the matrix C. [L,U,P]=lu(C)

(j) Compute the QR − factorization of the matrix C. [Q, R]=qr(C)

(k) What is the result of (e)? p=[1,2,-5,-6]

(l) What is the result of (f)? -3, -1, 2, also see problem 4 for the corresponding
eigenvectors.

(m) What is the result of (g)? -2

(n) What is the result of (h)? 3

(o) What is the result of (i)?

(p) What is the result of (j)?


