Problems of Eigenvalues/Eigenvectors

\& Reveiw of Eigenvalues and Eigenvectors
\& Gerschgorin's Disk Theorem
\& Power and Inverse Power Methods
\& Jacobi Transform for Symmetric Matrices
\& Spectrum Decomposition Theorem
\& Singular Value Decomposition with Applications
\& QR Iterations for Computing Eigenvalues
\& A Markov Process
\& e^{A} and Differential Equations
\& Other Topics with Applications

Definition and Examples

Let $A \in R^{n \times n}$. If $\exists \mathbf{v} \neq \mathbf{0}$ such that $A \mathbf{v}=\lambda \mathbf{v}, \lambda$ is called an eigenvalue of matrix A, and \mathbf{v} is called an eigenvector corresponding to (or belonging to) the eigenvalue λ. Note that \mathbf{v} is an eigenvector implies that $\alpha \mathbf{v}$ is also an eigenvector for all $\alpha \neq 0$. We define the Eigenspace (λ) as the vector space spanned by all of the eigenvectors corresponding to the eigenvalue λ.

$$
A \mathbf{x}=\lambda \mathbf{x} \Rightarrow(\lambda I-A) \mathbf{x}=\mathbf{0}, \mathbf{x} \neq \mathbf{0} \Rightarrow \operatorname{det}(\lambda I-A)=P(\lambda)=0
$$

Examples:

1. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right], \lambda_{1}=2, \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \lambda_{2}=1, \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
2. $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right], \lambda_{1}=2, \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \quad \lambda_{2}=1, \mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
3. $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right], \lambda_{1}=4, \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \lambda_{2}=2, \mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
4. $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], \lambda_{1}=j, \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ j\end{array}\right], \quad \lambda_{2}=-j, \mathbf{u}_{2}=\left[\begin{array}{l}j \\ 1\end{array}\right], j=\sqrt{-1}$.
5. $B=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$, then $\lambda_{1}=3, \mathbf{u}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}}\end{array}\right] ; \quad \lambda_{2}=-1, \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
6. $C=\left[\begin{array}{rr}3 & -1 \\ -1 & 3\end{array}\right]$, then $\tau_{1}=4, \mathbf{v}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right] ; \tau_{2}=2, \mathbf{v}_{2}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$.

Note that $\left\|\mathbf{u}_{i}\right\|_{2}=1$ and $\left\|\mathbf{v}_{i}\right\|_{2}=1$ for $i=1,2$. Denote $U=\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ and $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$, then

$$
U^{-1} B U=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right], \quad V^{-1} C V=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

Note that $V^{t}=V^{-1}$ but $U^{t} \neq U^{-1}$.

$$
\sum_{j=1}^{n} \lambda_{j}=\sum_{i=1}^{n} a_{i i} \text { and } \prod_{j=1}^{n} \lambda_{j}=\operatorname{det}(A)
$$

Let $A \in R^{n \times n}$, then $P(\lambda)=\operatorname{det}(\lambda I-A)$ is called the characteristic polynomial of matrix A.

Fundamental Theorem of Algebra
A real polynomial $P(\lambda)=\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}$ of degree n has n roots $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right\}$ such that

$$
P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)=\lambda^{n}-\left(\sum_{i=1}^{n} \lambda_{i}\right) \lambda^{n-1}+\cdots+(-1)^{n}\left(\prod_{i=1}^{n} \lambda_{i}\right)
$$

- $\sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} a_{i i}=\operatorname{tr}(A) \quad($ calledthetraceof $A)$
- $\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(A)$

Gershgorin's Disk Theorem

Every eigenvalue of matrix $A \in R^{n \times n}$ lies in at least one of the following disks

$$
D_{i}=\left\{x| | x-a_{i i}\left|\leq \sum_{j \neq i}\right| a_{i j} \mid\right\}, \quad 1 \leq i \leq n
$$

Example: $B=\left[\begin{array}{ccc}3 & 1 & 1 \\ 0 & 4 & 1 \\ 2 & 2 & 5\end{array}\right], \quad \lambda_{1}, \lambda_{2}, \lambda_{3} \in D_{1} \cup D_{2} \cup D_{3}$, where
$D_{1}=\{z| | z-3 \mid \leq 2\}, D_{2}=\{z| | z-4 \mid \leq 1\}, D_{3}=\{z| | z-5 \mid \leq 4\}$.
Note that $\lambda_{1}=6.5616, \quad \lambda_{2}=3.0000, \quad \lambda_{3}=2.4383$.
\square A matrix is said to be diagonally dominant if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \forall 1 \leq i \leq n$.
\diamond A diagonally dominant matrix is invertible.

Theorem: Let $A, P \in R^{n \times n}$, with P nonsingular, then λ is an eigenvalue of A with eigenvector \mathbf{x} iff λ is an eigenvalue of $P^{-1} A P$ with eigenvector $P^{-1} \mathbf{x}$.
(Proof) Let \mathbf{x} be an eigenvector of A corresponding to the eigenvalue λ, that is, $A \mathbf{x}=\lambda \mathbf{x}$. Then, we have

$$
\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right)=P^{-1} A\left(P P^{-1}\right) \mathbf{x}=P^{-1} A \mathbf{x}=P^{-1}(\lambda \mathbf{x})=\lambda\left(P^{-1} \mathbf{x}\right)
$$

Thus, $P^{-1} \mathbf{x}$ is an eigenvector corresponding to the eigenvalue λ of the matrix $P^{-1} A P$ (according to the definition).

On the other hand,

$$
\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right)=\lambda\left(P^{-1} \mathbf{x}\right)
$$

implies that $A \mathbf{x}=\lambda \mathbf{x}$ could be achieved based on simple matrix operations.
Theorem: Let $A \in R^{n \times n}$ and let λ be an eigenvalue of A with eigenvector \mathbf{x}. Then
(a) $\alpha \lambda$ is an eigenvalue of matrix αA with eigenvector \mathbf{x}
(b) $\lambda-\mu$ is an eigenvalue of matrix $A-\mu I$ with eigenvector \mathbf{x}
(c) If A is nonsingular, then $\lambda \neq 0$ and λ^{-1} is an eigenvalue of A^{-1} with eigenvector x

Let \mathbf{x} be an eigenvector of A corresponding to the eigenvalue λ, that is, $A \mathbf{x}=\lambda \mathbf{x}$. Then
Proof of (a) $(\alpha A) \mathbf{x}=\alpha(A \mathbf{x})=\alpha(\lambda \mathbf{x})=(\alpha \lambda) \mathbf{x}$.
Proof of (b) $(A-\mu I) \mathbf{x}=A \mathbf{x}-\mu \mathbf{x}=\lambda \mathbf{x}-\mu \mathbf{x}=(\lambda-\mu) \mathbf{x}$.
Proof of (c) If A is nonsingular, none of its eigenvalues is zero, otherwise, $A \mathbf{x}=\lambda \mathbf{x}=$ $0 \cdot \mathbf{x}=\mathbf{0}$ and $\mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}$ which implies that $\mathbf{x}=\mathbf{0}$ that contradicts that \mathbf{x} is an eigenvector (of A). Then, $A \mathbf{x}=\lambda \mathbf{x}$ implies that $\frac{1}{\lambda} \mathbf{x}=A^{-1} \mathbf{x}$. Therefore, $\frac{1}{\lambda}$ is an eigenvalue of matrix A^{-1} with eigenvector \mathbf{x}.

Definition: A matrix A is similar to B, denote by $A \sim B$, iff there exists an invertible matrix U such that $U^{-1} A U=B$. Furthermore, a matrix A is orthogonally similar to B, iff there exists an orthogonal matrix Q such that $Q^{t} A Q=B$.

Theorem: Two similar matrices have the same eigenvalues, i.e., $A \sim B \Rightarrow \lambda(A)=\lambda(B)$.
Proof Since $A \sim B$, we have $B=U^{-1} A U$ for some U, then

$$
|\lambda I-B|=\left|U^{-1}(\lambda I) U-U^{-1} A U\right|=\left|U^{-1}(\lambda I-A) U\right|=\left|U^{-1}\right| \cdot|\lambda I-A| \cdot|U|=|U|^{-1} \cdot|\lambda I-A| \cdot|U|
$$

Diagonalization of Matrices

Theorem: Suppose $A \in R^{n \times n}$ has n linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Let $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$, then $V^{-1} A V=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$.
\diamond If $A \in R^{n \times n}$ has n distinct eigenvalues, then their corresponding eigenvectors are linearly independent. Thus, any matrix with distinct eigenvalues can be diagonalized.
\diamond Not all matrices have distinct eigenvalues, therefore not all matrices are diagonalizable.

Nondiagonalizable Matrices

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 2 & 0 \\
-3 & 5 & 2
\end{array}\right]
$$

Diagonalizable Matrices

$$
C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right], \quad E=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right], \quad K=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogonally diagonalized.
$\diamond U^{t} A U=\Lambda$ or $A=U \Lambda U^{t}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{t}$, where U is an orthogonal matrix, and $\Lambda=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right]$.

Similarity transformation and triangularization

Schur's Theorem: $\forall A \in R^{n \times n}, \exists$ an orthogonal matrix U such that $U^{t} A U=T$ is upperΔ. The eigenvlues must be shared by the similarity matrix T and appear along its main diagonal.

Hint: By induction, suppose that the theorem has been proved for all matrices of order $n-1$, and consider $A \in R^{n \times n}$ with $A \mathbf{x}=\lambda \mathbf{x}$ and $\|\mathbf{x}\|_{2}=1$, then \exists a Householder matrix H_{1} such that $H_{1} \mathbf{x}=\beta \mathbf{e}_{1}$, e.g., $\beta=-\|\mathbf{x}\|_{2}$, hence

$$
H_{1} A H_{1}^{t} \mathbf{e}_{1}=H_{1} A\left(H_{1}^{-1} \mathbf{e}_{1}\right)=H_{1} A\left(\beta^{-1} \mathbf{x}\right)=H_{1} \beta^{-1} A \mathbf{x}=\beta^{-1} \lambda\left(H_{1} \mathbf{x}\right)=\beta^{-1} \lambda\left(\beta \mathbf{e}_{1}\right)=\lambda \mathbf{e}_{1}
$$ Thus,

$$
H_{1} A H_{1}^{t}=\left[\begin{array}{ccc}
\lambda & \mid & * \\
--- & \mid & --- \\
O & \mid & A^{(1)}
\end{array}\right]
$$

Spectrum Decomposition Theorem: Every real symmetric matrix can be orthogonally diagonalized.
$\diamond U^{t} A U=\Lambda$ or $A=U \Lambda U^{t}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{t}$, where U is an orthogonal matrix, and $\Lambda=$ $\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right]$.

Definition: A symmetric matrix $A \in R^{n \times n}$ is nonnegative definite if $\mathbf{x}^{t} A \mathbf{x} \geq 0 \forall \mathbf{x} \in R^{n}$, $\mathrm{x} \neq 0$.

Definition: A symmetric matrix $A \in R^{n \times n}$ is positive definite if $\mathbf{x}^{t} A \mathbf{x}>0 \forall \mathbf{x} \in R^{n}$, $\mathrm{x} \neq 0$.

Singular Value Decomposition Theorem: Each matrix $A \in R^{m \times n}$ can be decomposed as $A=U \Sigma V^{t}$, where both $U \in R^{m \times m}$ and $V \in R^{n \times n}$ are orthogonal. Moreover, $\Sigma \in R^{m \times n}=\operatorname{diag}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}, 0, \ldots, 0\right]$ is essentially diagonal with the singular values satisfying $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{k}>0$.
$\diamond A=U \Sigma V^{t}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}$

Example:

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], \quad B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]
$$

A Jacobi Transform (Givens Rotation)

$$
J(i, k ; \theta)=\left[\begin{array}{ccccccc}
1 & \cdot & . & \cdots & . & \cdot & 0 \\
0 & \ddots & . & \cdots & . & \vdots & 0 \\
0 & \cdot & c & \cdots & s & \cdot & 0 \\
. & \vdots & . & \ddots & . & \vdots & \cdot \\
0 & \cdot & -s & \cdots & c & \cdot & 0 \\
0 & \vdots & . & \cdots & . & \ddots & 0 \\
. & \cdot & 0 & \cdots & 0 & \cdot & 1
\end{array}\right]
$$

$J_{h h}=1$ if $h \neq i$ or $h \neq k$, where $i<k$
$J_{i i}=J_{k k}=c=\cos \theta$
$J_{k i}=-s=-\sin \theta, J_{i k}=s=\sin \theta$

Let $\mathbf{x}, \mathbf{y} \in R^{n}$, then $\mathbf{y}=J(i, k ; \theta) \mathbf{x}$ implies that

$$
\begin{aligned}
& y_{i}=c x_{i}+s x_{k} \\
& y_{k}=-s x_{i}+c x_{k} \\
& c=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{k}^{2}}}, s=\frac{x_{k}}{\sqrt{x_{i}^{2}+x_{k}^{2}}}, \\
& \quad \mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]=\left[\begin{array}{c}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right], \text { then } J(2,4 ; \theta) \mathbf{x}=\left[\begin{array}{c}
1 \\
\sqrt{20} \\
3 \\
0
\end{array}\right]
\end{aligned}
$$

Jacobi Transforms (Givens Rotations)

The Jacobi method consists of a sequence of orthogonal similarity transformations such that

$$
J_{K}^{t} J_{K-1}^{t} \cdots J_{2}^{t} J_{1}^{t} A J_{1} J_{2} \cdots J_{K-1} J_{K}=\Lambda
$$

where each J_{i} is orthogonal, so is $Q=J_{1} J_{2} \cdots J_{K-1} J_{K}$.
Each Jacobi transform (Given rotation) is just a plane rotation designed to annihilate one of the off-diagonal matrix elements. Let $A=\left(a_{i j}\right)$ be symmetric, then

$$
\begin{aligned}
& B=J^{t}(p, q, \theta) A J(p, q, \theta), \text { where } \\
& b_{r p}=c a_{r p}-s a_{r q} \quad \text { for } \quad r \neq p, r \neq q \\
& b_{r q}=s a_{r p}+c a_{r q} \quad \text { for } r \neq p, r \neq q \\
& b_{p p}=c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \\
& b_{q q}=s^{2} a_{p p}+c^{2} a_{q q}+2 s c a_{p q} \\
& b_{p q}=\left(c^{2}-s^{2}\right) a_{p q}+s c\left(a_{p p}-a_{q q}\right)
\end{aligned}
$$

To set $b_{p q}=0$, we choose c, s such that

$$
\begin{equation*}
\alpha=\cot (2 \theta)=\frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}} \tag{1}
\end{equation*}
$$

For computational convenience, let $t=\frac{s}{c}$, then $t^{2}+2 \alpha t-1=0$ whose smaller root (in absolute sense) can be computed by

$$
\begin{equation*}
t=\frac{\operatorname{sgn}(\alpha)}{\sqrt{\alpha^{2}+1}+|\alpha|}, \quad \text { and } c=\frac{1}{\sqrt{1+t^{2}}}, \quad s=c t, \quad \tau=\frac{s}{1+c} \tag{2}
\end{equation*}
$$

Remark

$$
\begin{aligned}
& b_{p p}=a_{p p}-t a_{p q} \\
& b_{q q}=a_{q q}+t a_{p q} \\
& b_{r p}=a_{r p}-s\left(a_{r q}+\tau a_{r p}\right) \\
& b_{r q}=a_{r q}+s\left(a_{r p}-\tau a_{r q}\right)
\end{aligned}
$$

Algorithm of Jacobi Transforms to Diagonalize A

$A^{(0)} \leftarrow A$
for $k=0,1, \cdots$, until convergence
Let $\left|a_{p q}^{(k)}\right|=\operatorname{Max}_{i<j}\left\{\left|a_{i j}^{(k)}\right|\right\}$
Compute

$$
\begin{aligned}
\alpha_{k} & =\frac{a_{q q}^{(k)}-a_{p p}^{(k)}}{2 a_{p q}^{(k)}}, \text { solve } \cot \left(2 \theta_{k}\right)=\alpha_{k} \text { for } \theta_{k} . \\
t & =\frac{\operatorname{sgn}(\alpha)}{\sqrt{\alpha^{2}+1}+|\alpha|} \\
c & =\frac{1}{\sqrt{1+t^{2}}}, \quad, s=c t \\
\tau & =\frac{s}{1+c} \\
A^{(k+1)} & \leftarrow J_{k}^{t} A^{(k)} J_{k}, \text { where } J_{k}=J\left(p, q, \theta_{k}\right)
\end{aligned}
$$

endfor

Convergence of Jacobi Algorithm to Diagonalize A

Proof:

Since $\left|a_{p q}^{(k)}\right| \geq\left|a_{i j}^{(k)}\right|$ for $i \neq j, p \neq q$, then
$\left|a_{p q}^{(k)}\right|^{2} \geq o f f\left(A^{(k)}\right) / 2 N$, where $N=\frac{n(n-1)}{2}$, and
of $f\left(A^{(k)}\right)=\sum_{i \neq j}^{n}\left(a_{i j}^{(k)}\right)^{2}$, the sum of square off-diagonal elements of $A^{(k)}$

Furthermore,

$$
\begin{aligned}
o f f\left(A^{(k+1)}\right) & =\text { of } f\left(A^{(k)}\right)-2\left(a_{p q}^{(k)}\right)^{2}+2\left(a_{p q}^{(k+1)}\right)^{2} \\
& =\text { of } f\left(A^{(k)}\right)-2\left(a_{p q}^{(k)}\right)^{2}, \text { since } a_{p q}^{(k+1)}=0 \\
& \leq \text { off }\left(A^{(k)}\right)\left(1-\frac{1}{N}\right), \text { since }\left|a_{p q}^{(k)}\right|^{2} \geq \text { off }\left(A^{(k)} / 2 N\right.
\end{aligned}
$$

Thus

$$
\text { of } f\left(A^{(k+1)}\right) \leq\left(1-\frac{1}{N}\right)^{k+1} \text { of } f\left(A^{(0)}\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

Example:

$$
A=\left[\begin{array}{ccc}
4 & 2 & 0 \\
2 & 3 & 1 \\
0 & 1 & 2
\end{array}\right], \quad J(1,2 ; \theta)=\left[\begin{array}{ccc}
c & s & 0 \\
-s & c & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then

$$
A^{(1)}=J^{t}(1,2 ; \theta) A J(1,2 ; \theta)=\left[\begin{array}{ccc}
4 c^{2}-4 c s+3 s^{2} & 2 c^{2}+c s-2 s^{2} & -s \\
2 c^{2}+c s-2 s^{2} & 3 c^{2}+4 c s+4 s^{2} & c \\
-s & c & 1
\end{array}\right]
$$

Note that of $f\left(A^{(1)}\right)=2<10=o f f\left(A^{(0)}\right)=o f f(A)$

Example for Convergence of Jacobi Algorithm

$$
\begin{aligned}
& A^{(0)}=\left[\begin{array}{lllll}
1.0000 & 0.5000 & 0.2500 & 0.1250 \\
0.5000 & 1.0000 & 0.5000 & 0.2500 \\
0.2500 & 0.5000 & 1.0000 & 0.5000 \\
0.1250 & 0.2500 & 0.5000 & 1.0000
\end{array}\right], \quad A^{(1)}=\left[\begin{array}{llll}
1.5000 & 0.0000 & 0.5303 & 0.2652 \\
0.0000 & 0.5000 & 0.1768 & 0.0884 \\
0.5303 & 0.1768 & 1.0000 & 0.5000 \\
0.2652 & 0.0884 & 0.5000 & 1.0000
\end{array}\right] \\
& A^{(2)}=\left[\begin{array}{llll}
1.8363 & 0.0947 & 0.0000 & 0.4917 \\
0.0947 & 0.5000 & 0.1493 & 0.0884 \\
0.0000 & 0.1493 & 0.6637 & 0.2803 \\
0.4917 & 0.0884 & 0.2803 & 1.0000
\end{array}\right], \quad A^{(3)}=\left[\begin{array}{llll}
2.0636 & 0.1230 & 0.1176 & 0.0000 \\
0.1230 & 0.5000 & 0.1493 & 0.0405 \\
0.1176 & 0.1493 & 0.6637 & 0.2544 \\
0.0000 & 0.0405 & 0.2544 & 0.7727
\end{array}\right] \\
& A^{(4)}=\left[\begin{array}{llll}
2.0636 & 0.1230 & 0.0915 & 0.0739 \\
0.1230 & 0.5000 & 0.0906 & 0.1254 \\
0.0915 & 0.0906 & 0.4580 & 0.0000 \\
0.0739 & 0.1254 & 0.0000 & 0.9783
\end{array}\right], \quad A^{(5)}=\left[\begin{array}{lllll}
2.0636 & 0.1018 & 0.0915 & 0.1012 \\
0.1018 & 0.4691 & 0.0880 & 0.0000 \\
0.0915 & 0.0880 & 0.4580 & 0.0217 \\
0.1012 & 0.0000 & 0.0217 & 1.0092
\end{array}\right] \\
& A^{(6)}=\left[\begin{array}{llll}
2.0701 & 0.0000 & 0.0969 & 0.1010 \\
0.0000 & 0.4627 & 0.0820 & -0.0064 \\
0.0969 & 0.0820 & 0.4580 & 0.0217 \\
0.1010 & -0.0064 & 0.0217 & 1.0092
\end{array}\right], \quad A^{(15)}=\left[\begin{array}{lllll}
2.0856 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.5394 & 0.0000 & -0.0000 \\
0.0000 & 0.0000 & 0.3750 & 0.0000 \\
0.0000 & -0.0000 & 0.0000 & 1.0000
\end{array}\right]
\end{aligned}
$$

Cholesky Algorithm

Theorem: Every positive definitive matrix A can be decomposed as $A=L L^{t}$, where L is lower $-\Delta$.

Algorithm: $A \in R^{n \times n}, A=L L^{t}, A$ is positive definite and L is lower $-\Delta$.

$$
\text { for } j=0,1, \cdots, n-1
$$

$$
\begin{aligned}
& L_{j j} \leftarrow\left[A_{j j}-\sum_{k=0}^{j-1} L_{j k}^{2}\right]^{1 / 2} \\
& \text { for } i=j+1, j+2, \cdots, n-1 \\
& L_{i j} \leftarrow\left[A_{i j}-\sum_{k=0}^{j-1} L_{i k} L_{j k}\right] / L_{j j}
\end{aligned}
$$

endfor
endfor

$$
\begin{gathered}
C=\left[\begin{array}{cc}
4 & -2 \\
-2 & 5
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right]=L_{1} L_{1}^{t} \\
A=\left[\begin{array}{ccc}
9 & 3 & -3 \\
3 & 17 & 3 \\
-3 & 3 & 27
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 0 \\
1 & 4 & 0 \\
-1 & 1 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
0 & 4 & 1 \\
0 & 0 & 5
\end{array}\right]=L_{2} L_{2}^{t}
\end{gathered}
$$

Power of A Matrix and Its Eigenvalues

Theorem: Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be eigenvalues of $A \in R^{n \times n}$. Then $\lambda_{1}^{k}, \lambda_{2}^{k}, \cdots, \lambda_{n}^{k}$ are eigenvalues of $A^{k} \in R^{n \times n}$ with the same corresponding eigenvectors of A. That is,

$$
A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \quad \rightarrow \quad A^{k} \mathbf{v}_{i}=\lambda_{i}^{k} \mathbf{v}_{i} \quad \forall 1 \leq i \leq n
$$

Suppose that the matrix $A \in R^{n \times n}$ has n linearly independent eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Then any $\mathbf{x} \in R^{n}$ can be written as

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

Then

$$
A^{k} \mathbf{x}=\lambda_{1}^{k} c_{1} \mathbf{v}_{1}+\lambda_{2}^{k} c_{2} \mathbf{v}_{2}+\cdots+\lambda_{n}^{k} c_{n} \mathbf{v}_{n}
$$

In particular, if $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|$ for $2 \leq j \leq n$ and $c_{1} \neq 0$, then $A^{k} \mathbf{x}$ will tend to lie in the direction \mathbf{v}_{1} when k is large enough.

Power Method for Computing the Largest Eigenvalues

Suppose that the matrix $A \in R^{n \times n}$ is diagonalizable and that $U^{-1} A U=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ with $U=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right]$ and $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Given $\mathbf{u}^{(0)} \in R^{n}$, then power method produces a sequence of vectors $\mathbf{u}^{(k)}$ as follows.
for $k=1,2, \cdots$

$$
\begin{aligned}
& \mathbf{z}^{(k)}=A \mathbf{u}^{(k-1)} \\
& r^{(k)}=z_{m}^{(k)}=\left\|\mathbf{z}^{(k)}\right\|_{\infty}, \text { for some } 1 \leq m \leq n . \\
& \mathbf{u}^{(k)}=\mathbf{z}^{(k)} / r^{(k)}
\end{aligned}
$$

endfor
λ_{1} must be real since the complex eigenvalues must appear in a "relatively conjugate pair".

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \Rightarrow \begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=1
\end{aligned}, \quad \mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Let $\mathbf{u}^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then $\mathbf{u}^{(5)}=\left[\begin{array}{c}1.0 \\ 0.9918\end{array}\right]$, and $r^{(5)}=2.9756$.

QR Iterations for Computing Eigenvalues

```
%
% Script File: shiftQR.m
% Solving Eigenvalues by shift-QR factorization
%
Nrun=15;
fin=fopen('dataMatrix.txt');
fgetL(fin); % read off the header line
n=fscanf(fin, '%d',1);
A=fscanf(fin,'%f',[n n]);
A=A';
SaveA=A;
for k=1:Nrun,
    s=A(n,n);
    A=A-s*eye(n);
    [Q R]=qr(A);
    A=R*Q+s*eye(n);
end
eig(SaveA)
%
% dataMatrix.txt
%
Matrices for computing eigenvalues by QR factorization or shift-QR
    5
    1.0
    0.5
    0.25
    0.125
    0.0625 0.125 0.25 0.5 1.0
    4 for shift-QR studies
    2.9766 0.3945 0.4198 1.1159
    0.3945 2.7328 -0.3097 0.1129
    0.4198-0.3097 2.5675 0.6079
    1.1159 0.1129 0.6097 1.7231
```


Norms of Vectors and Matrices

Definition: A vector norm on R^{n} is a function

$$
\tau: R^{n} \rightarrow R^{+}=\{x \geq 0 \mid x \in R\}
$$

that satisfies
(1) $\tau(\mathrm{x})>0 \quad \forall \mathrm{x} \neq \mathbf{0}, \tau(\mathbf{0})=0$
(2) $\tau(c \mathbf{x})=|c| \tau(\mathbf{x}) \forall c \in R, \mathbf{x} \in R^{n}$
(3) $\tau(\mathbf{x}+\mathbf{y}) \leq \tau(\mathbf{x})+\tau(\mathbf{y}) \forall \mathbf{x}, \mathbf{y} \in R^{n}$

Hölder norm (p-norm) $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1$.
$\mathbf{(} \mathbf{p}=\mathbf{1})\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$ (Mahattan or City-block distance)
$\mathbf{(p = 2)}\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$ (Euclidean distance)
$(\mathbf{p}=\infty)\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left\{\left|x_{i}\right|\right\}$ (∞-norm)

Definition: A matrix norm on $R^{m \times n}$ is a function

$$
\tau: R^{m \times n} \rightarrow R^{+}=\{x \geq 0 \mid x \in R\}
$$

that satisfies
(1) $\tau(A)>0 \quad \forall A \neq O, \tau(O)=0$
(2) $\tau(c A)=|c| \tau(A) \forall c \in R, A \in R^{m \times n}$
(3) $\tau(A+B) \leq \tau(A)+\tau(B) \quad \forall A, B \in R^{m \times n}$

Consistency Property: $\tau(A B) \leq \tau(A) \tau(B) \quad \forall A, B$
(a) $\tau(A)=\max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$
(b) $\|A\|_{F}=\left[\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}\right]^{1 / 2}$ (Fröbenius norm)

Subordinate Matrix Norm: $\|A\|=\max _{\|\mathbf{x}\| \neq \mathbf{0}}\{\|A \mathbf{x}\| /\|\mathbf{x}\|\}$
(1) If $A \in R^{m \times n}$, then $\|A\|_{1}=\max _{1 \leq j \leq n}\left(\sum_{i=1}^{m}\left|a_{i j}\right|\right)$
(2) If $A \in R^{m \times n}$, then $\|A\|_{\infty}=\max _{1 \leq i \leq m}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right)$
(3) Let $A \in R^{n \times n}$ be real symmetric, then $\|A\|_{2}=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$, where $\lambda_{i} \in \lambda(A)$

Theorem: Let $\mathbf{x} \in R^{n}$ and let $A=\left(a_{i j}\right) \in R^{n \times n}$. Define $\|A\|_{1}=\operatorname{Sup}_{\|\mathbf{u}\|_{1}=1}\left\{\|A \mathbf{u}\|_{1}\right\}$

Proof: For $\|\mathbf{u}\|_{1}=1$,

$$
\|A\|_{1}=\operatorname{Sup}\left\{\|A \mathbf{u}\|_{1}\right\}=\sum_{i=1}^{n}\left|\sum_{j=1}^{n} a_{i j} u_{j}\right| \leq \sum_{j=1}^{n} \sum_{i=1}^{n}\left|a_{i j}\right|\left|u_{j}\right|=\sum_{j=1}^{n}\left|u_{j}\right| \sum_{i=1}^{n}\left|a_{i j}\right|
$$

Then

$$
\|A\|_{1} \leq \operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{n}\left|a_{i j}\right|\right\} \sum_{j=1}^{n}\left|u_{j}\right|=\operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{n}\left|a_{i j}\right|\right\}
$$

On the other hand, let $\sum_{i=1}^{n}\left|a_{i k}\right|=\operatorname{Max}_{1 \leq j \leq n}\left\{\sum_{i=1}^{n}\left|a_{i j}\right|\right\}$ and choose $\mathbf{u}=\mathbf{e}_{k}$, which completes the proof.

Theorem: Let $A=\left[a_{i j}\right] \in R^{m \times n}$, and define $\|A\|_{\infty}=\operatorname{Max}_{\|\mathbf{u}\|_{\infty}=1}\left\{\|A \mathbf{u}\|_{\infty}\right\}$.
Show that $\|A\|_{\infty}=\operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}$
Proof: Let $\sum_{j=1}^{n}\left|a_{K j}\right|=\operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}$, for any $\mathbf{x} \in R^{n}$ with $\|\mathbf{x}\|_{\infty}=1$, we have

$$
\begin{aligned}
\|A \mathbf{x}\|_{\infty} & =\operatorname{Max}_{1 \leq i \leq m}\left\{\left|\sum_{j=1}^{n} a_{i j} x_{j}\right|\right\} \\
& \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right| \cdot\left|x_{j}\right|\right\} \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\|\mathbf{x}\|_{\infty}\right\} \\
& \leq \operatorname{Max}_{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\right\}=\sum_{j=1}^{n}\left|a_{K j}\right|
\end{aligned}
$$

In particular, if we pick up $\mathbf{y} \in R^{n}$ such that $y_{j}=\operatorname{sign}\left(a_{K j}\right), \forall 1 \leq j \leq n$, then $\|\mathbf{y}\|_{\infty}=1$, and $\|A \mathbf{y}\|_{\infty}=\sum_{j=1}^{n}\left|a_{K j}\right|$, which completes the proof.

Theorem: Let $A=\left[a_{i j}\right] \in R^{n \times n}$, and define $\|A\|_{2}=\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}\right\}$. Show that

$$
\left.\|A\|_{2}=\sqrt{\rho\left(A^{t} A\right)}=\sqrt{\text { maximum eigenvalue of } A^{t} A} \quad \text { (spectral radius }\right)
$$

(Proof) Let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ be eigenvalues and their corresponding unit eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ of matrix $A^{t} A$, that is,

$$
\left(A^{t} A\right) \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad \text { and } \quad\left\|\mathbf{u}_{i}\right\|_{2}=1 \quad \forall 1 \leq i \leq n .
$$

Since $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{n}$ must be an orthonormal basis based on spectrum decomposition theorem, for any $\mathbf{x} \in R^{n}$, we have $\mathbf{x}=\sum_{i=1}^{n} c_{i} \mathbf{u}_{i}$. Then

$$
\begin{aligned}
\|A\|_{2} & =\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}\right\} \\
& =\sqrt{\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\|A \mathbf{x}\|_{2}^{2}\right\}} \\
& =\sqrt{\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left\{\mathbf{x}^{t} A^{t} A \mathbf{x}\right\}} \\
& =\sqrt{\operatorname{Max}_{\|\mathbf{x}\|_{2}=1}\left|\sum_{i=1}^{n} \lambda_{i} c_{i}^{2}\right|} \\
& =\sqrt{\operatorname{Max}_{1 \leq j \leq n}\left\{\left|\lambda_{j}\right|\right\}}
\end{aligned}
$$

A Markov Process

Suppose that 10% of the people outside Taiwan move in, and 20% of the people indside Taiwan move out in each year. Let y_{k} and z_{k} be the population at the end of the $k-t h$ year, outside Taiwan and inside Taiwan, respectively. Then we have

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right]=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]\left[\begin{array}{l}
y_{k-1} \\
z_{k-1}
\end{array}\right] \Rightarrow \lambda_{1}=1.0, \lambda_{2}=0.7} \\
{\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right]=\left[\begin{array}{ll}
0.9 & 0.2 \\
0.1 & 0.8
\end{array}\right]^{k}\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1^{k} & 0 \\
0 & (0.7)^{k}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
z_{0}
\end{array}\right]}
\end{gathered}
$$A Markov matrix A is nonnegative with each colume adding to 1 .

(a) $\lambda_{1}=1$ is an eigenvalue with a nonnegative eigenvector \mathbf{x}_{1}.
(b) The other eigenvalues satisfy $\left|\lambda_{i}\right| \leq 1$.
(c) If any power of A has all positive entries, and the other $\left|\lambda_{i}\right|<1$. Then $A^{k} \mathbf{u}_{0}$ approaches the steady state of \mathbf{u}_{∞} which is a multiple of \mathbf{x}_{1} as long as the projection of \mathbf{u}_{0} in \mathbf{x}_{1} is not zero.
\diamond Check Perron-Fröbenius theorem in Strang's book.

e^{A} and Differential Equations

क $e^{A}=I+\frac{A}{1!}+\frac{A^{2}}{2!}+\cdots+\frac{A^{m}}{m!}+\cdots$
\& $\frac{d u}{d t}=-\lambda u \Rightarrow u(t)=e^{-\lambda t} u(0)$
\& $\frac{d \mathbf{u}}{d t}=-A \mathbf{u}=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right] \mathbf{u} \Rightarrow \mathbf{u}(t)=e^{-t A} \mathbf{u}(0)$
\& $A=U \Lambda U^{t}$ for an orthogonal matrix U, then

$$
e^{A}=U e^{\Lambda} U^{=} U \operatorname{diag}\left[e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots, e^{\lambda_{n}}\right] U^{t}
$$

\& Solve $x^{\prime \prime \prime}-3 x^{\prime \prime}+2 x^{\prime}=0$.
Let $y=x^{\prime}, z=y^{\prime}=x^{\prime \prime}$, and let $\mathbf{u}=[x, y, z]^{t}$. The problem is reduced to solving $\mathbf{u}^{\prime}=A \mathbf{u}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & 3\end{array}\right] \mathbf{u}$

Then

$$
\mathbf{u}(t)=e^{t A} \mathbf{u}(0)=\left[\begin{array}{ccc}
\frac{1}{\sqrt{21}} & \frac{1}{\sqrt{3}} & 1 \\
\frac{2}{\sqrt{21}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{4}{\sqrt{21}} & \frac{1}{\sqrt{3}} & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{2 t} & 0 & 0 \\
0 & e^{t} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -2.2913 & 2.2913 \\
0 & 3.4641 & -1.7321 \\
1 & -1.5000 & 0.5000
\end{array}\right] \mathbf{u}(0)
$$

Problems Solved by Matlab

Let $\mathrm{A}, \mathrm{B}, \mathrm{H}, \mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{b}$ be matrices and vectors defined below, and $H=I-2 \mathbf{u u}^{t}$
$A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & 6 & 0 \\ -2 & 7 & 2\end{array}\right], B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 3\end{array}\right], \mathbf{u}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right], \mathbf{b}=\left[\begin{array}{c}6 \\ 2 \\ -5\end{array}\right], \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{y}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right]$

1. Let $A=L U=Q R$, find $L, U ; Q, R$.
2. Find determinants and inverses of matrices A, B, and H.
3. Solve $A \mathbf{x}=\mathbf{b}$, how to find the number of floating-point operations are required?
4. Find the ranks of matrices A, B, and H .
5. Find the characteristic polynomials of matrices A and B.
6. Find 1-norm, 2-norm, and ∞-norm of matrices A, B, and H.
7. Find the eigenvalues/eigenvectors of matrices A and B.
8. Find matrices U and V such that $U^{-1} A U$ and $V^{-1} B V$ are diagonal matrices.
9. Find the singular values and singular vectors of matrices A and B.
10. Randomly generate a 4×4 matrix C with $0 \leq C(i, j) \leq 9$.
