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Orthogonality

♣ Motivation - More intuitive

♣ Inner product and projection

♣ Orthogonal vectors and linear independence

♣ Orthogonal complement

♣ Projection and least squares approximation

♣ Orthonormal bases and orthogonal matrices

♣ Gram-Schmidt orthogonalization process

♣ QR factorization
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Inner Product and Projection

Definition: An inner product on a real vector space V is a function that associates a real
number 〈x,y〉 with x,y ∈ V such that the following axioms are satisfied for all x,y, z ∈ V ,
c ∈ R.

(1) 〈x,y〉 = 〈y,x〉
(2) 〈x + z,y〉 = 〈x,y〉 + 〈z,y〉
(3) 〈cx,y〉 = c〈x,y〉
(4) 〈x,x〉 ≥ 0, ∀ x and 〈x,x〉 = 0 iff x = 0

� A real vector space with an inner product is called a real inner product space.

Examples

(1) In Rn, let x = [x1, x2, · · · , xn]t, y = [y1, y2, · · · , yn]
t, and define 〈•, •〉 : Rn ×

Rn → R with 〈x,y〉 =
∑n

i=1 xiyi = xty, then it is an inner product.

(2) In C[0,1], define 〈•, •〉 : C[0, 1]×C[0, 1] → R with 〈f, g〉 =
∫ 1
0 [f(x)g(x)]w(x)dx,

then it is an inner product.

Definition: In a vector space V , x,y ∈ V are orthogonal if 〈x,y〉 = 0.

Definition: v1,v2, · · · ,vn are said to be (mutually) orthogonal if 〈vi,vj〉 = 0 for i 	= j.

Definition: u1,u2, · · · ,un are (mutually) orthogonal and ‖ui‖2 = 1 ∀ 1 ≤ i ≤ n, then
u1,u2, · · · ,un are said to be orthonormal.
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Examples

(1) [1, 0, 1]t, [1, 0,−1]t, and [0, 1, 0]t are orthogonal but not orthonormal in R3.

(2) For f, g ∈ C[−1, 1], define 〈f, g〉 =
∫ 1
−1[f(x)g(x)]dx, then

{ 1√
2
, cos(πx), sin(πx), · · · , cos(nπx), sin(nπx)} is an orthonormal set.

(3) Let Tn ∈ C[−1, 1] be defined as Tn(x) = cos(ncos−1x). 〈f, g〉 =
∫ 1
−1 f(x)g(x) 1√

1−x2 dx

in C(0,1). Then T0 ≡ 1, T1(x) = x, T2(x) = 2x2−1, T3(x) = 4x3−3x, and in general,
Tn(x) is polynomial of degree n with the leading coefficient 2n−1. Moreover, {T ′

js} is
an orthogonal set.

Note that

〈Tm(x), Tn(x)〉 =
∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx

=
∫ 1

−1

cos(mcos−1x) cos(ncos−1x)√
1 − x2

dx

= −
∫ 0

π
cos(my) cos(ny)dy where dy =

1√
1 − x2

dx

=
∫ π

0
cos(my) cos(ny)dy

Then 〈Tm(x), Tn(x)〉 = 0 if m 	= n; π
2

if m = n ≥ 1; π if m = n = 0



54

Orthogonal Vectors and Linear Independence

Theorem: If the nonzero vectors v1,v2, · · · ,vn are orthogonal, then they are linearly
independent.

Definition: If {v1,v2, · · · ,vn} is a basis of Rn and they are orthonormal, then {v1,v2, · · · ,vn}
is said to be an orthonormal basis of Rn.

Definition: Two subspaces V and W of Rn are orthogonal if 〈v,w〉 = 0 ∀ v ∈ V, and ∀w ∈
W , which can be written as V ⊥ W .

Theorem: The row space of a matrix A ∈ Rm×n is orthogonal to its nullspace N(A), i.e.,
R(At) ⊥ N(A). Similarly, R(A) ⊥ N(At).

Definition: Given a subspace V of Rn, the space of all vectors orthogonal to V is called
the orthogonal complement of V, and denoted by V ⊥.

Fundamental Theorem of Linear Algebra

A ∈ Rm×n ⇒ N(A) = R(At)⊥ and N(At) = R(A)⊥

Direct Sum

Let V, W ∈ Rn such that W = V ⊥, then every x ∈ Rn can be uniquely represented as
x = v + w, where v ∈ V and w ∈ W . Denote by Rn = V

⊕
W .
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Intersection and Sum of Vector Spaces

Definition: The sum of vector subspaces V and W is defined as

V + W = {v + w|v ∈ V, w ∈ W}

Definition: Let V,W be subspaces of a vector space, then

(a) V ∪ W is in general not a vector subspace

(b) V + W is a vector subspace

(c) V ∩ W is a vector subspace

(d) V ∩ V ⊥ = {0}

(e) L ∩ U = D and L + U = Rn×n, where

L = {A ∈ Rn×n|aij = 0 if i < j}

U = {B ∈ Rn×n|aij = 0 if i > j}

D = {C ∈ Rn×n|aij = 0 if i 	= j}

Theorem: dim(L + U) + dim(L ∩ U) = dim(L) + dim(U).
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Projection Onto A Line

Definition: xty = ‖x‖2‖y‖2 cos θ

Definition: The projection of a vector b onto the line a is a vector γa such that 〈b −
γa, a〉 = 0. Note that

γa =
a(atb)

ata
=

aat

ata
b = Pab

where Pa is called the projection matrix along the line a.

Example: a = [1, 1, 1]t, b = [1, 2, 3]t, then Pab = 2a.

Let P be a projection matrix along a certain line, then

(a) P 2 = P and P t = P .

(b) P is not invertible (P has rank 1).

(c) Prove and Explain why atb = 0 implies that Pa + Pb = I and PaPb = O.

(d) Show that tr(P ) = 1.
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The Linear Least Squares Problems

Consider the problem of determining an x ∈ Rn such that the residual sum of squares
ρ2(x) = ‖b− Ax‖2

2 is minimized for given b ∈ Rn, A ∈ Rn×n.

� Best Line Fit:
Given [xi, yi]

t ∈ R2 for 1 ≤ i ≤ n, find a line which best fits these points. The problem
is equivalent to finding m and b to minimize

f(m, b) =
n∑

i=1

(yi − mxi − b)2

or to solve
⎡
⎢⎣

∑n
i=1 x2

i

∑n
i=1 xi

∑n
i=1 xi

∑n
i=1 1

⎤
⎥⎦

⎡
⎢⎣

m

b

⎤
⎥⎦ =

⎡
⎢⎣

∑n
i=1 xiyi

∑n
i=1 yi

⎤
⎥⎦

� Best Parabola Fit:
Given [xi, yi]

t ∈ R2 for 1 ≤ i ≤ n(n = 7), find a parabola which best fits these points.
The problem is equivalent to finding a, b, c to minimize

f(a, b, c) =
n∑

i=1

(yi − ax2
i − bxi − c)2

or to solve
⎡
⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xi

∑n
i=1 x2

i

∑n
i=1 xi

∑n
i=1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 x2

i yi

∑n
i=1 xiyi

∑n
i=1 yi

⎤
⎥⎥⎥⎥⎥⎥⎦
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Least Squares Approximations

Theorem: The linear least squares problem of minimizing ‖b−Ax‖2 always has a solution.
The solution is unique iff Null(A) = {0}.

Corollary: Let x be a linear least squares solution of minimizing ‖b − Ax‖2, then the
residual vector r = b − Ax satisfies the normal equations.

Atr = At(b − Ax) = 0 or AtAx = Atb

Theorem: Ax = b has a solution iff b ∈ R(A).

If the columns of A are linearly independent, then AtA is invertible and x = (AtA)−1Atb.
The projection of b onto the column space of matrix A is p = A(AtA)−1Atb.

Example:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2

1 3

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎣

4

5

6

⎤
⎥⎥⎥⎥⎥⎥⎦

, AtA =

⎡
⎢⎣

2 5

5 13

⎤
⎥⎦ , x =

⎡
⎢⎣

2

1

⎤
⎥⎦ , p =

⎡
⎢⎢⎢⎢⎢⎢⎣

4

5

0

⎤
⎥⎥⎥⎥⎥⎥⎦

Theorem: If A ∈ Rm×n has rank n (n ≤ m), the normal equations AtAx = Atb has a
unique solution x̂ = (AtA)−1Atb and x̂ is the unique LLS solution to Ax = b.
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Orthonormal Basis and Orthogonal Matrices

Definition: The vectors u1,u2, · · · ,un are orthonormal if ‖uk‖2 = 1, 1 ≤ k ≤ n, and
〈ui,uj〉 = 0 ∀ i 	= j.

Definition: An orthogonal matrix is simply a matrix with orthonormal columns. That is,
Q ∈ Rm×k is orthogonal if QtQ = Ik. In particular, if m = k, then Q−1 = Qt.

Examples:

A =

⎡
⎢⎣

cos θ − sin θ

sin θ cos θ

⎤
⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1

0 2 0

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

, P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• The column vectors of A and P are orthonormal

• The column vectors of B and H are orthogonal but not orthonormal

♣ Some Properties of An Orthogonal Matrix Q ∈ Rn×n

(a) The columns of Q form an orthonormal basis for Rn

(b) QtQ = I and Q−1 = Qt

(c) ‖Qx‖2 = ‖x‖2, ∀ x ∈ Rn

(d) 〈Qx, Qy〉 = 〈x,y〉, ∀ x,y ∈ Rn

(e) ‖QA‖2 = ‖A‖2, ∀ A ∈ Rn×k

(f) |Q| = 1 or − 1
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Least Squares and Orthonormal Sets

Theorem: If the column vectors of A ∈ Rm×n form an orthonormal set of vectors in Rm,
then AtA = I and the LLS solution to Ax = b is x̂ = (AtA)−1Atb = Atb.

Theorem: Let S be a subspace of an inner product vector space V and x ∈ V . Let
{u1,u2, · · · ,un} be an orthonromal basis for S. If

p =
n∑

i=1

ciui, where ci = 〈x,ui〉

Then, (x − p) ∈ S⊥

Proof: 〈x − p, ui〉 = 〈x, ui〉 − 〈p, ui〉 = ci − ci = 0
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Gram-Schmidt Orthogonalization Process

Let V = {a1, a2, · · · , an} be a set of independent vectors. The Gram-Schmidt process
transforms the set V to an orthonormal set of U = {q1,q2, · · · ,qn} such that

span(q1,q2, · · · ,qn) = span(a1, a2, · · · , an)

(a) q1 ← a1/‖a1‖2

(b) t2 = a2 − 〈a2,q1〉q1; q2 ← t2/‖t2‖2

(c) tk = ak − ∑k−1
i=1 〈ak,qi〉qi; qk ← tk/‖tk‖2 for 3 ≤ k ≤ n.

Example:

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, a2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, a3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

2

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

; q1 =
1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, q2 =
1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, q3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

Example (QR Factorization):

A = [a1, a2, a3] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 2

0 0 1

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
2

1√
2

0

0 0 1

1√
2

−1√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

√
2 1√

2

√
2

0 1√
2

√
2

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Example:

A = [a1, a2, a3] = [q1, q2, q3]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qt
1a1 qt

1a2 qt
1a3

0 qt
2a2 qt

2a3

0 0 qt
3a3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= QR
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QR Factorization

Theorem: Every A ∈ Rm×n with linearly independent columns can be factored into A =
QR, where Q is orthogonal, R is upper-Δ and invertible.

Proof: Successively applied Householder matrices {H ′
js} on A, we can get H1H2 · · ·HmA =

R, where , R is upper-Δ. If R is not invertible, then ∃ x ∈ Rn such that Rx = 0, then
QRx = 0 and hence Ax = 0 which contradicts that A has linearly independent column
vectors.

Note: Suppose A = QR, the LLS solution of Ax = b is reduced to solving a triangular
system of equations Rx = Qtb.

Example:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 −1

2 0 1

2 −4 2

4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 −0.4 −0.8

0.4 0.2 0.4

0.4 −0.8 0.4

0.8 0.4 −0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

5 −2 1

0 4 −1

0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦

= QR

Let b = [−1.4, 0.2, 1.2,−1.6]t. By solving Rx = Qtb, we have x = [−0.4, 0, 1]t for the LLS

solution of Ax = b.
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Least Squares Approximation
(Matlab Code for Best Line Fitting)

% Script file: linefit.m

% A Linear Least Square Fit for (GPA_hight school, GPA_university)

%

fin=fopen(’dataGPA.txt’,’r’);

fgetl(fin);

m=2; n=20;

T=fscanf(fin,’%f’,[m n]);

fclose(fin);

T=T’;

X=T(:,1);

Y=T(:,2);

A=[sum(X.*X), sum(X); sum(X), n];

b=[sum(X.*Y); sum(Y)];

v=A\b; % (0.8822, 0.0298)

for j=1:n,

t=2.0+0.2*j;

X1(j)=t;

Y1(j)=t*v(1)+v(2);

end

plot(X1,Y1,’r-’,X,Y,’bo’); axis([2 4 2 4]); grid;

legend(’Best fitting line is y=0.8822x+0.0298’,’Location’,’NorthWest’)

title(’University GPA vs. High School GPA’)

ylabel(’University GPA’)

xlabel(’High School GPA’)

GPA Data Set dataGPA.txt

20 pairs of High School and University GPAs for Line Fit

3.75 3.19

3.45 3.34

2.87 2.23

3.60 3.46

3.42 2.97

4.00 3.79

2.65 2.55
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Best fitting line is y=0.8822x+0.0298

Figure 1: University GPA vs. High School GPA.
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Least Squares Approximation
(Matlab Code for Best Parabola Fitting)

% Script file: plotQ.m

% A Quadratic Least Squares Fit for Data from Heath’s book

%

fin=fopen(’dataQua.txt’,’r’);

fgetl(fin);

m=2; n=21;

T=fscanf(fin,’%f’,[m n]);

fclose(fin);

T=T’;

X=T(:,1);

Y=T(:,2);

[P S]=polyfit(X,Y,2);

ymu=mean(Y);

Yh=P(1)*X.^2 + P(2)*X + P(3);

top=norm(Yh-ymu,2);

bot=norm(Y-ymu,2);

R2=(top*top)/(bot*bot);

plot(X,Y,’ro’,X,Yh,’b-’);

legend(’R^2 Statistics = 0.9335’,’\itY=-0.2384\itX^2+2.6704\itX+2.1757’,4);

title(’Quadratic Curve Fitting’)

Parabola Data Set dataQua.txt

Data for Parabola Fit (Quadratic Fit) from Heath’s Book

0.0 2.9

0.5 2.7

1.0 4.8

1.5 5.3

2.0 7.1

2.5 7.6

3.0 7.7

3.5 7.6

4.0 9.4

4.5 9.0

5.0 9.6
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R2 Statistics = 0.9335

Y=−0.2384X2+2.6704X+2.1757

Figure 2: Best Parabola Fitting.
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