Introduction

The central problems of *Linear Algebra* is to study the properties of matrices and to investigate the solutions of linear equations.

A matrix is a collection of numbers placed on a rectangular lattice. Each *row* or *column* of a matrix is called a vector.

♣ Example

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3], \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

Notice that the above notations could be written as

$$A \in \mathbb{R}^{3 \times 3}, \text{ and } \mathbf{a}_1 = \begin{bmatrix} 2\\4\\-2 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 1\\-6\\7 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x\\y\\z \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5\\-2\\9 \end{bmatrix} \in \mathbb{R}^3$$

A linear equation is the operations of known and unknown numbers whose products are summed up to a known number.

 $\clubsuit Example \langle \mathbf{a}_1, \mathbf{x} \rangle = \mathbf{a}_1^t \mathbf{x} = b_1 \text{ and } A\mathbf{x} = \mathbf{b}$

2x	+	y	+	z	=	5	$\begin{bmatrix} 2 \end{bmatrix}$	1	1	5
4x	_	6y			=	-2,	4	-6	0	-2
-2x	+	7y	+	2z	=	9	$\left\lfloor -2\right\rfloor$	7	2	9

 \diamond Matlab Example

α	θ	0	au
β	θ	π	v
γ	ι	₽	ϕ
δ	κ	ρ	φ
ϵ	λ	ρ	χ
ε	μ	σ	ψ
ζ	ν	ς	ω
η	ξ		
•	\heartsuit	\diamond	•
Γ	Λ	Σ	Ψ
Δ	[I]	Υ	Ω
Θ	Π	Φ	

Table 1: Greek Letters

\alpha	\theta	0	\tau	\\ \hline
\beta	\vartheta	\pi	\upsilon	$\land \land$
\gamma	\iota	\varpi	\phi	\\ \hline
\delta	\kappa	\rho	\varphi	\\ \hline
\epsilon	\lambda	\varrho	∖chi	$\land \land$
\varepsilon	\mu	\sigma	\psi	$\land \land$
\zeta	\nu	\varsigma	\omega	\\ \hline
\eta	\xi			\\ \hline
\spadesuit	\heartsuit	\diamondsuit	\clubsuit	\\ \hline
\Gamma	\Lambda	\Sigma	\Psi	$\land \land$
\Delta	\Xi	\Upsilon	\Omega	$\land \land$
\Theta	\Pi	\Phi		\\ \hline