Solutions for Exam 1 of CS2334 (01)
 October 23, 2017

$(15 \%)(1)$ Given

$$
A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
2 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & -1 \\
0 & 2 \\
3 & 1
\end{array}\right]
$$

(a) Find $A B$
(b) Find $(A B)^{-1}$
(c) Find $B^{t} A^{t}$
(a) $A B=\left[\begin{array}{cc}5 & -1 \\ -1 & 1\end{array}\right]$
(b) $(A B)^{-1}=\left[\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{5}{4}\end{array}\right]$
(c) $B^{t} A^{t}=\left[\begin{array}{cc}5 & -1 \\ -1 & 1\end{array}\right]$.
$(\mathbf{1 5 \%}) \mathbf{(2)}$ Let $C, D \in R^{3 \times 3}$ with $\operatorname{det}(C)=4$ and $\operatorname{det}(D)=5$. Find the value of
(a) $\operatorname{det}(C D)$
(b) $\operatorname{det}(3 C)$
(c) $\operatorname{det}(2 C D)$
(d) $\operatorname{det}\left(C^{-1} D\right)$
(a) $\operatorname{det}(C D)=20$
(b) $\operatorname{det}(3 C)=108$
(c) $\operatorname{det}(2 C D)=160$
(d) $\operatorname{det}\left(C^{-1} D\right)=\frac{5}{4}$
$(15 \%)(3)$ Let the matrices W and V be defined by the following Matlab commands, respectively.

$$
\begin{aligned}
& W=[1,3,9 ; 1,4,16 ; 1,5,25] ; \\
& V=[1,12,144 ; 1,13,169 ; 1,14,196] ;
\end{aligned}
$$

(a) Give the matrices W and V , respectively.
(b) Find $\operatorname{det}(W)$
(c) Find $\operatorname{det}(V)$
(a) $W=\left[\begin{array}{ccc}1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25\end{array}\right], \quad V=\left[\begin{array}{ccc}1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25\end{array}\right] ; \quad(b) \operatorname{det}(W)=2 ; \quad$ (c) $\operatorname{det}(V)=2$.
$(15 \%)(4)$ Let $P, Q, R \in R^{3 \times 3}$ be defined as

$$
P=I-\mathbf{e}_{2} \mathbf{e}_{1}^{t}, \quad Q=I-2 \mathbf{e}_{3} \mathbf{e}_{1}^{t}, \quad R=I-3 \mathbf{e}_{3} \mathbf{e}_{2}^{t}
$$

(a)

$$
P^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad Q^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad R^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

(b,c)

$$
S=P Q R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & -3 & 1
\end{array}\right], \quad T=R^{-1} Q^{-1} P^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
5 & 3 & 1
\end{array}\right]
$$

$\mathbf{5 (a)}$ The augmented matrix is $[A \mid \mathbf{b}]$, where

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

$\mathbf{5}(\mathbf{b}, \mathbf{c}) E_{23}(1) E_{13}(1) E_{12}(-2)[A \mid \mathbf{b}]=[U \mid \mathbf{c}], L=\left(E_{12}(-2)\right)^{-1}\left(E_{13}(1)\right)^{-1}\left(E_{23}(1)\right)^{-1}$, where

$$
\begin{gathered}
E_{12}(-2)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{13}(1)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right], E_{23}(1)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \\
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right], \quad[U \mid \mathbf{c}]=\left[\begin{array}{ccccc}
2 & 1 & 1 & \mid & 5 \\
0 & -8 & -2 & -12 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{gathered}
$$

Then $[x, y, z]=[1,1,2]$ with $z=2, y=1, x=1$ are found sequentially (backward).

5(d)

$$
\begin{gathered}
P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 1 & 0 \\
-0.5 & 1 & 1
\end{array}\right], \quad U=\left[\begin{array}{ccc}
4 & -6 & 0 \\
0 & 4 & 1 \\
0 & 0 & 1
\end{array}\right] \\
5(\mathbf{f}) \quad \mathrm{A}=[2,1,1 ; 4,-6,0 ;-2,7,2] ; \mathrm{b}=\left[\begin{array}{lll}
5,-2,9
\end{array}\right] ; \mathrm{x}=\mathrm{A} \backslash \mathrm{~b}
\end{gathered}
$$

(15\%)(6) Prove the following statements.
(a) A matrix A is idempotent if $A^{2}=A$. Show that if A is idempotent, so is $I-A$.
(b) Show that if A is idempotent, then $2 A-I$ is invertible and is its own inverse.
(c) Let U_{n} be the $n \times n$ matrix, each of whose entries is 1 . Show that for $n>1$,

$$
\left(I-U_{n}\right)^{-1}=I-\frac{1}{n-1} U_{n}
$$

(a) $(I-A)^{2}=I^{2}-A-A+A^{2}=I-A-A+A=I-A$ which completes the proof.
(b) $(2 A-I)(2 A-I)=4 A^{2}-2 A-2 A+I^{2}=4 A-4 A+I=I$ which completes the proof.
(c) Since $U_{n}^{2}=n U_{n}$, we have

$$
\begin{aligned}
\left(I-U_{n}\right)\left(I-\frac{1}{n-1} U_{n}\right) & =I-U_{n}-\frac{1}{n-1} U_{n}+\frac{1}{n-1} U_{n}^{2} \\
& =I-\frac{n}{n-1} U_{n}+\frac{n}{n-1} U_{n} \\
& =I
\end{aligned}
$$

Therefore,

$$
\left(I-U_{n}\right)^{-1}=I-\frac{1}{n-1} U_{n}
$$

