Quiz 3 for CS2334(01)
 December 13, 2017

StudentName: \qquad ID : \qquad Index : \qquad
Let $A \in R^{3 \times 3}$ be defined as follows.

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -3 & 1 \\
0 & 1 & -3
\end{array}\right]
$$

Answer the following questions.
(1) Find the three eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and their corresponding unit eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, that is, $\left\|\mathbf{v}_{i}\right\|_{2}=1,1 \leq i \leq 3$.
(2) Find the characteristic polynomial of A.
(3) Evaluate the trace of A.
(4) Evaluate the determinant of A.
(5) What are the eigenvalues of A^{-1} and their corresponding eigenvectors?
(6) By (1), let $\left.V=\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$, then, we have $V^{-1} A V=\Lambda$, where $\Lambda=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -4\end{array}\right]$. What are the three eigenvalues of A^{3} and their corresponding eigenvectors?
(7) What is $V^{t} A V$?
(8) What is $V^{t} A^{3} V$?
(9) Can you use Simple Matlab Commands to solve the above problems?

Quiz 3 for CS2334(01)

December 13, 2017
StudentName: Solutions ID: 20171213 Index : \qquad
Let $A \in R^{3 \times 3}$ be defined as follows.

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -3 & 1 \\
0 & 1 & -3
\end{array}\right]
$$

Solutions:

(1) $\lambda_{1}=3, \lambda_{2}=-2, \lambda_{3}=-4 . \mathbf{v}_{1}=[1,0,0]^{t}, \mathbf{v}_{2}=\left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{t}, \mathbf{v}_{3}=\left[0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]^{t}$.

Matlab [V lambda]=eig(A);
(2) $\operatorname{poly}(A)=P(\lambda)=\lambda^{3}+3 \lambda^{2}-10 \lambda-24$.

Matlab poly(A)
(3) $\operatorname{trace}(A)=\sum_{i=1}^{3} a_{i i}=\sum_{i=1}^{3} \lambda_{i}=-3$.

Matlab trace(A)
(4) $\operatorname{det}(A)=\prod_{j=1}^{3} \lambda_{j}=3 \times(-2) \times(-4)=24$.

Matlab $\operatorname{det}(A)$
(5) $\mu_{1}=\frac{1}{3}, \mu_{2}=\frac{-1}{2}, \mu_{3}=\frac{-1}{4}$ and $\mathbf{v}_{1}=[1,0,0]^{t}, \mathbf{v}_{2}=\left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{t}, \mathbf{v}_{3}=\left[0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]^{t}$.

Matlab [V, mu]=eig((inv(A))
(6) $\lambda\left(A^{3}\right)=\left\{3^{3},(-2)^{3},(-4)^{3}\right\}=\{27,-8,-64\}$. $\mathbf{v}_{1}=[1,0,0]^{t}, \mathbf{v}_{2}=\left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^{t}, \mathbf{v}_{3}=$ $\left[0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]^{t}$.
Matlab [V, D] $=\operatorname{eig}\left(A^{\wedge} 3\right)$
(7) $V^{t} A V=\Lambda$.

Matlab Lambda $=V^{\prime} * A * V$
(8) $V^{t} A^{3} V=\Lambda^{3}$.

Matlab LambdaCube $=V^{\prime} *\left(\mathrm{~A}^{\wedge} 3\right) * V$
(9) Can you use Simple Matlab Commands to solve the above problems?

