Quiz 2 for CS2334(01)
 November 13, 2017

StudentName : \qquad StudentNumber : \qquad Index : \qquad
(1) Mark \bigcirc if the vector addition and scalar multiplication forms a vector space, otherwise mark \times.
() (a) For $\left(R^{3}, \oplus, \odot\right)$, the set of all triples of real numbers $[x, y, z]$ with the operations

$$
[u, v, w] \oplus[x, y, z]=[u+x, v+y, w+z] \quad \text { and } \quad \alpha \odot[x, y, z]=[\alpha x, y, z]
$$

() (b) For (V, \oplus, \odot), where $V=\{x \in R \mid x>0\}, \alpha \in R$,

$$
x \oplus y=x y \quad \text { and } \quad \alpha \odot x=x^{\alpha}
$$

() (c) For $\left(R^{2}, \oplus, \odot\right)$, the set of all paris of real numbers $[x, y]$ with the operations

$$
[u, v] \oplus[x, y]=[u+x, v+y] \text { and } \alpha \odot[x, y]=[2 \alpha x, 2 \alpha y]
$$

() (d) For (V, \oplus, \odot), where $V=\{a+b x \mid a, b \in R\}$, $(a+b x) \oplus(c+d x)=(a+c)+(b+d) x$ and $\alpha \odot(c+d x)=(\alpha c)+(\alpha d) x$
() (e) For $\left(R^{2}, \oplus, \odot\right)$, the set of all paris of real numbers $[x, y]$ with the operations

$$
[u, v] \oplus[x, y]=[u+x+1, v+y+1] \text { and } \alpha \odot[x, y]=[\alpha x, \alpha y]
$$

() (f) For (V, \oplus, \odot), where $V=\{[1, y] \mid y \in R\}$, the set of all paris of real numbers $[1, y]$ with the operations

$$
[1, x] \oplus[1, y]=[1, x+y] \text { and } \alpha \odot[1, y]=[1, \alpha y]
$$

(2) Mark \bigcirc if the statement is true, otherwise mark \times.
() (g) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
() (h) If $V=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right)$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly independent.
() (i) Let $A \in R^{m \times n}$, then the nullspace of A is a subset of R^{n}.
() (j) Let $A \in R^{m \times n}$, then the column space of A is a subset of R^{m}.

Quiz 2 for CS2334(01)
 November 8, 2017

StudentName : \qquad StudentNumber: \qquad Index : \qquad
(1) Mark \bigcirc if the vector addition and scalar multiplication forms a vector space, otherwise mark \times.
(\times) (a) For $\left(R^{3}, \oplus, \odot\right)$, the set of all triples of real numbers $[x, y, z]$ with the operations $[u, v, w] \oplus[x, y, z]=[u+x, v+y, w+z]$ and $\alpha \odot[x, y, z]=[\alpha x, y, z]$
(○) (b) For (V, \oplus, \odot), where $V=\{x \in R \mid x>0\}, \alpha \in R$,

$$
x \oplus y=x y \quad \text { and } \quad \alpha \odot x=x^{\alpha}
$$

(\times) (c) For $\left(R^{2}, \oplus, \odot\right)$, the set of all paris of real numbers $[x, y]$ with the operations

$$
[u, v] \oplus[x, y]=[u+x, v+y] \text { and } \alpha \odot[x, y]=[2 \alpha x, 2 \alpha y]
$$

(\bigcirc) (d) For (V, \oplus, \odot), where $V=\{a+b x \mid a, b \in R\}$,

$$
(a+b x) \oplus(c+d x)=(a+c)+(b+d) x \text { and } \alpha \odot(c+d x)=(\alpha c)+(\alpha d) x
$$

(\times) (e) For $\left(R^{2}, \oplus, \odot\right)$, the set of all paris of real numbers $[x, y]$ with the operations

$$
[u, v] \oplus[x, y]=[u+x+1, v+y+1] \text { and } \alpha \odot[x, y]=[\alpha x, \alpha y]
$$

(○) (f) For (V, \oplus, \odot), where $V=\{[1, y] \mid y \in R\}$, the set of all paris of real numbers $[1, y]$ with the operations

$$
[1, x] \oplus[1, y]=[1, x+y] \text { and } \alpha \odot[1, y]=[1, \alpha y]
$$

(2) Mark \bigcirc if the statement is true, otherwise mark \times.
(\times) (g) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
(\times) (h) If $V=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right)$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly independent.
(\bigcirc) (i) Let $A \in R^{m \times n}$, then the nullspace of A is a subset of R^{n}.
(○) (j) Let $A \in R^{m \times n}$, then the column space of A is a subset of R^{m}.

