Quiz 2 for CS2334(01) November 13, 2017 StudentName : ______ StudentNumber : _____ Index : ____

- Mark if the vector addition and scalar multiplication forms a vector space, otherwise mark ×.
- () (a) For (R^3, \oplus, \odot) , the set of all triples of real numbers [x, y, z] with the operations $[u, v, w] \oplus [x, y, z] = [u + x, v + y, w + z]$ and $\alpha \odot [x, y, z] = [\alpha x, y, z]$

() (b) For
$$(V, \oplus, \odot)$$
, where $V = \{x \in R | x > 0\}, \alpha \in R$,
 $x \oplus y = xy \text{ and } \alpha \odot x = x^{\alpha}$

() (c) For (R^2, \oplus, \odot) , the set of all parts of real numbers [x, y] with the operations $[u, v] \oplus [x, y] = [u + x, v + y]$ and $\alpha \odot [x, y] = [2\alpha x, 2\alpha y]$

() (d) For
$$(V, \oplus, \odot)$$
, where $V = \{a + bx | a, b \in R\}$,
 $(a + bx) \oplus (c + dx) = (a + c) + (b + d)x \text{ and } \alpha \odot (c + dx) = (\alpha c) + (\alpha d)x$

- () (e) For (R^2, \oplus, \odot) , the set of all parts of real numbers [x, y] with the operations $[u, v] \oplus [x, y] = [u + x + 1, v + y + 1]$ and $\alpha \odot [x, y] = [\alpha x, \alpha y]$
- () (f) For (V, \oplus, \odot) , where $V = \{[1, y] | y \in R\}$, the set of all paris of real numbers [1, y] with the operations

$$[1, x] \oplus [1, y] = [1, x + y]$$
 and $\alpha \odot [1, y] = [1, \alpha y]$

- (2) Mark \bigcirc if the statement is true, otherwise mark \times .
- () (g) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
- () (h) If $V = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.
- () (i) Let $A \in \mathbb{R}^{m \times n}$, then the nullspace of A is a subset of \mathbb{R}^n .
- () (j) Let $A \in \mathbb{R}^{m \times n}$, then the column space of A is a subset of \mathbb{R}^m .

Quiz 2 for CS2334(01) November 8, 2017 StudentName : ______ StudentNumber : _____ Index : _____

- Mark if the vector addition and scalar multiplication forms a vector space, otherwise mark ×.
- (×) (a) For (R^3, \oplus, \odot) , the set of all triples of real numbers [x, y, z] with the operations $[u, v, w] \oplus [x, y, z] = [u + x, v + y, w + z]$ and $\alpha \odot [x, y, z] = [\alpha x, y, z]$
- (()) (b) For (V, \oplus, \odot) , where $V = \{x \in R | x > 0\}, \alpha \in R$, $x \oplus y = xy \text{ and } \alpha \odot x = x^{\alpha}$
- (×) (c) For (R^2, \oplus, \odot) , the set of all parts of real numbers [x, y] with the operations $[u, v] \oplus [x, y] = [u + x, v + y]$ and $\alpha \odot [x, y] = [2\alpha x, 2\alpha y]$
- (\bigcirc) (d) For (V, \oplus, \odot) , where $V = \{a + bx | a, b \in R\}$, $(a + bx) \oplus (c + dx) = (a + c) + (b + d)x$ and $\alpha \odot (c + dx) = (\alpha c) + (\alpha d)x$
- (×) (e) For (R^2, \oplus, \odot) , the set of all parts of real numbers [x, y] with the operations $[u, v] \oplus [x, y] = [u + x + 1, v + y + 1]$ and $\alpha \odot [x, y] = [\alpha x, \alpha y]$
- (() (f) For (V, \oplus, \odot) , where $V = \{[1, y] | y \in R\}$, the set of all parts of real numbers [1, y] with the operations

 $[1, x] \oplus [1, y] = [1, x + y]$ and $\alpha \odot [1, y] = [1, \alpha y]$

- (2) Mark \bigcirc if the statement is true, otherwise mark \times .
- (×) (g) If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
- (×) (h) If $V = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.
- ()) (i) Let $A \in \mathbb{R}^{m \times n}$, then the nullspace of A is a subset of \mathbb{R}^n .
- ()) (j) Let $A \in \mathbb{R}^{m \times n}$, then the column space of A is a subset of \mathbb{R}^m .