Exam 3 for CS2334(01) January 8, 2018

 Name :
 Index :

(30%)1. Let

	2	-1			4	4]
A =			,	C =		
	[-1]	2			3	5

(a) Compute eigenvalues and eigenvectors and give a *spectrum decomposition* for matrix A.

- (b) Find the *Cholesky factorization* for A.
- (c) Find the singular value decomposition for A.
- (d) Find the *LUdecomposition* for matrix *C*.
- (e) Find the *QR* factorization for *C*.
- (f) Find the singular value decomposition for C.

(30%)2. Let $B \in \mathbb{R}^{3 \times 3}$ be a matrix defined as follows.

$$B = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- (a) Find the *characteristic polynomial* of *B*.
- (b) Find the eigenvalues λ_1 , λ_2 , λ_3 and their corresponding *unit* eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , that is, $\|\mathbf{v}_i\|_2 = 1$, $1 \le i \le 3$.
- (c) Find the eigenvalues of B^{-1} and their corresponding *unit eigenvectors*.
- (d) Find an othogonal matrix U such that $U^t B U$ is a diagonal matrix.
- (e) Find the eigenvalues μ_1 , μ_2 , μ_3 of matrix B + 2I and their corresponding unit eigenvectors \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 .
- (f) Find the eigenvalues τ_1 , τ_2 , τ_3 of matrix $(B-I)^5$.

- () (a) Cholesky decomposition is suitable for every real and symmetric matrix.
- () (b) Every nonsingular matrix has an LU decomposition.
- () (c) Every nonsingular matrix has a QR factorization.
- () (d) Every real symmetric matrix must have nonnegative eigenvalues.
- () (e) Every real diagonally dominant matrix must have positive eigenvalues.
- () (f) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $C \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\langle C\mathbf{x}, C\mathbf{x} \rangle = \|\mathbf{x}\|_2^2$.
- () (g) The product of all eigenvalues of a real matrix equals its determinant.
- (h) The product of two orthogonal and symmetric matrices is orthogonal and symmetric.
- () (i) In a QR-factorization A = QR of a nonsingular matrix A, $det(R) \neq 0$.
- () (j) Let $H_i \in \mathbb{R}^{n \times n}$, $1 \le i \le k$ be Householder matrices, then $\prod_{j=1}^k H_j = (-1)^n$.
- () (k) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal basis of \mathbb{R}^n . If $C \in \mathbb{R}^{n \times n}$ is nonsingular, then $\{C\mathbf{v}_1, C\mathbf{v}_2, \dots, C\mathbf{v}_n\}$ is also an orthonormal basis of \mathbb{R}^n .
- 4.(10%) Let $H \in \mathbb{R}^{n \times n}$ be a Householder matrix.
 - (a) Show that H must have an eigenvalue -1.
 - (b) Show that if λ is an eigenvalue of H, then $|\lambda| = 1$.

6.(14%) Let
$$b = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}$$
, $C = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Writing a single Matlab command

to solve each of the following questions for $\mathbf{a} \sim \mathbf{h}$ and answer the questions for $\mathbf{i} \sim \mathbf{j}$.

- (a) Randomly generate a 3 by 3 matrix A whose elements are integers in [0, 10].
- (b) Input vector b.
- (c) Solve the linear system Ax = b for x.
- (d) Input matrix C given above.
- (e) Find the characteristic polynomial for C.
- (f) Find the eigenvalues and eigenvectors of C.
- (g) Find the QR factorization of the matrix C.
- (h) Find the singular value decomposition for the matrix C.
- (3%)(i) Show the output results of (f).
- (3%)(j) Show the output results of (h).