Exam 3 for CS2334(01)
 January 8, 2018

Name: \qquad StudentNumber : \qquad Index : \qquad
(30\%)1. Let

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right], \quad C=\left[\begin{array}{cc}
4 & 4 \\
3 & 5
\end{array}\right]
$$

(a) Compute eigenvalues and eigenvectors and give a spectrum decomposition for matrix A.
(b) Find the Cholesky factorization for A.
(c) Find the singular value decomposition for A.
(d) Find the $L U$ decomposition for matrix C.
(e) Find the $Q R$ factorization for C.
(f) Find the singular value decomposition for C.
$\mathbf{(3 0 \%)} \mathbf{2}$. Let $B \in R^{3 \times 3}$ be a matrix defined as follows.

$$
B=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

(a) Find the characteristic polynomial of B.
(b) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and their corresponding unit eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, that is, $\left\|\mathbf{v}_{i}\right\|_{2}=1,1 \leq i \leq 3$.
(c) Find the eigenvalues of B^{-1} and their corresponding unit eigenvectors.
(d) Find an othogonal matrix U such that $U^{t} B U$ is a diagonal matrix.
(e) Find the eigenvalues $\mu_{1}, \mu_{2}, \mu_{3}$ of matrix $B+2 I$ and their corresponding unit eigenvectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}$.
(f) Find the eigenvalues $\tau_{1}, \tau_{2}, \tau_{3}$ of matrix $(B-I)^{5}$.
$\mathbf{3 .}(\mathbf{2 0} \%)$ Mark \bigcirc if the statement is true, and mark \times otherwise, or give your comments.
() (a) Cholesky decomposition is suitable for every real and symmetric matrix.
() (b) Every nonsingular matrix has an LU decomposition.
() (c) Every nonsingular matrix has a QR factorization.
() (d) Every real symmetric matrix must have nonnegative eigenvalues.
() (e) Every real diagonally dominant matrix must have positive eigenvalues.
() (f) Let $\mathbf{x}, \mathbf{y} \in R^{n}$ and $C \in R^{n \times n}$ is an orthogonal matrix, then $\langle C \mathbf{x}, C \mathbf{x}\rangle=\|\mathbf{x}\|_{2}^{2}$.
() (g) The product of all eigenvalues of a real matrix equals its determinant.
() (h) The product of two orthogonal and symmetric matrices is orthogonal and symmetric.
() (i) In a QR-factorization $A=Q R$ of a nonsingular matrix $A, \operatorname{det}(R) \neq 0$.
() (j) Let $H_{i} \in R^{n \times n}, 1 \leq i \leq k$ be Householder matrices, then $\prod_{j=1}^{k} H_{j}=(-1)^{n}$.
() (k) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ be an orthonormal basis of R^{n}. If $C \in R^{n \times n}$ is nonsingular, then $\left\{C \mathbf{v}_{1}, C \mathbf{v}_{2}, \cdots, C \mathbf{v}_{n}\right\}$ is also an orthonormal basis of R^{n}.
4.(10\%) Let $H \in R^{n \times n}$ be a Householder matrix.
(a) Show that H must have an eigenvalue -1 .
(b) Show that if λ is an eigenvalue of H, then $|\lambda|=1$.
$\mathbf{6 . (1 4 \%)}$) Let $b=\left[\begin{array}{c}1 \\ -5 \\ 4\end{array}\right], \quad C=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2\end{array}\right]$. Writing a single Matlab command to solve each of the following questions for $\mathbf{a} \sim \mathbf{h}$ and answer the questions for $\mathbf{i} \sim \mathbf{j}$.
(a) Randomly generate a 3 by 3 matrix A whose elements are integers in $[0,10]$.
(b) Input vector b.
(c) Solve the linear system $A x=b$ for x.
(d) Input matrix C given above.
(e) Find the characteristic polynomial for C.
(f) Find the eigenvalues and eigenvectors of C.
(g) Find the $Q R$ - factorization of the matrix C.
(h) Find the singular value decomposition for the matrix C.
(3\%)(i) Show the output results of (f).
$(3 \%)(\mathrm{j})$ Show the output results of (h).

