Exam 2 for CS2334(01)

December 4, 2017

Name : ______ *StudentNumber* : ______ *Index* : _____

- () (1) R^m is a vector subspace of R^n for all $1 \le m \le n$.
- () (2) It is possible to find a pair of 2-dimensional subspaces S and T of R^3 such that $dim(S \cap T) = 1$.
- () (3) If S and T are subspaces of a vector space V, then both $S \cap T$ and S + T are vector subspaces of V.
- () (4) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m$ are linearly independent vectors in \mathbb{R}^n , then $span(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m) = \mathbb{R}^n$.

() (5)
$$rank(A) = rank(A^t)$$
 for any $A \in \mathbb{R}^{m \times n}$.

- () (6) Let $A \in \mathbb{R}^{m \times n}$, then $Null(A) \leq \mathbb{R}^n$ and $\mathbb{R}(A) \leq \mathbb{R}^m$.
- () (7) Let $S = \{[x, y]^t | y = 3x + 2\} \subset \mathbb{R}^2$, then S is a vector subspace of \mathbb{R}^2 .
- () (8) If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{z} \rangle = 0$, then $\mathbf{x} \perp \mathbf{z}$.
- () (9) A set of *n* nonzero orthogonal vectors in \mathbb{R}^n must be a basis for \mathbb{R}^n .
- () (10) Let $U = span([1, 0, 1]^t)$ and $V = span([0, 1, 0]^t)$, then $U \oplus V = R^3$.

- (A) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^n$ be orthonormal vectors, then $\|\mathbf{u} 3\mathbf{v} + 5\mathbf{w} \mathbf{z}\|_2 =$ _____
- (B) Let $\mathbf{x} = [1, 2, 1, 2]^t$, $\mathbf{y} = [1, -1, -1, 1]^t$, then the angle between \mathbf{x} and $\mathbf{y} =$ ______
- (C) Let $V = \{[0, 0, z]^t | z \in R\} \subset R^3$, then $V^{\perp} =$
- (D) Let $\mathbf{u} = [1, 2, 3, 4]^t$, then the rank of $\mathbf{u}\mathbf{u}^t =$ _____
- (E) Let $\mathbf{a} = [1, 1, 1]^t$, $\mathbf{b} = [5, 3, 7]^t$, then the projection of **b** along the line $\mathbf{a} =$ _____

(F) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, the least squares error solution of $A\mathbf{x} = \mathbf{b}$ is

- (G) The point on the line y = 2x + 1 that is closest to $[5, 2]^t$ is _____
- (H) Let $\mathbf{x} = [1, 1, 1, 1, 1, 1, 1]^t$, $\mathbf{y} = [1, 2, 3, 4, 5, 6, 7, 8]^t$, and $Q \in \mathbb{R}^{8 \times 8}$ is orthogonal, then $\langle Q\mathbf{x}, Q\mathbf{y} \rangle =$ _____
- (I) Let $\mathbf{y} = [-1, 3, -5, 1]^t$, then $\|\mathbf{y}\|_1 + \|\mathbf{y}\|_2 + \|\mathbf{y}\|_{\infty} =$ _____
- (J) Let $f, g \in C[-1, 1]$, and define the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$, then $\langle \sin 2\pi x, \sin 2\pi x \rangle =$ _____, $\langle \cos 4\pi x, \cos 3\pi x \rangle =$ _____

III.(10%) Let $\mathbf{x} \in \mathbb{R}^n$, show that $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1$.

IV.(10%) Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation such that

$$L\left(\left[\begin{array}{c}1\\0\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\0\end{array}\right], \quad L\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right) = \left[\begin{array}{c}1\\-1\end{array}\right], \quad L\left(\left[\begin{array}{c}0\\0\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\1\end{array}\right]$$

- (a) Find the kernel of L, Ker(L).
- (b) Evaluate $L\begin{pmatrix} 3\\ 2\\ 1 \end{pmatrix}$.

- **V.(20%)** A Householder matrix H can be defined as $H = I 2\mathbf{u}\mathbf{u}^t$, where $\mathbf{u} \in \mathbb{R}^n$ and $\|\mathbf{u}\|_2 = 1$.
 - (a) Show that *H* is symmetric.
 - (b) Show that *H* is orthogonal.
 - (c) Show that $H^{-1} = H$.
 - (d) Let $\mathbf{u} = [\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}]^t$ and $U = I 2\mathbf{u}\mathbf{u}^t$, compute U.
 - (e) Given any two unit vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, that is, $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2 = 1$. Find a Householder matrix $T \in \mathbb{R}^{n \times n}$ such that $T\mathbf{x} = \mathbf{y}$.