Exam 2 for CS2334(01)
 December 4, 2017

Name: \qquad StudentNumber : \qquad Index: \qquad
I.(20\%) Mark \bigcirc if the statement is true, and mark \times otherwise.
() (1) R^{m} is a vector subspace of R^{n} for all $1 \leq m \leq n$.
() (2) It is possible to find a pair of 2-dimensional subspaes S and T of R^{3} such that $\operatorname{dim}(S \cap T)=1$.
() (3) If S and T are subspaces of a vector space V, then both $S \cap T$ and $S+T$ are vector subspaces of V.
() (4) If $\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}$ are linearly independent vectors in R^{n}, then $\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}\right)=$ R^{n}.
() (5) $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$ for any $A \in R^{m \times n}$.
() (6) Let $A \in R^{m \times n}$, then $\operatorname{Null}(A) \leq R^{n}$ and $R(A) \leq R^{m}$.
() (7) Let $S=\left\{[x, y]^{t} \mid y=3 x+2\right\} \subset R^{2}$, then S is a vector subspace of R^{2}.
() (8) If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in R^{n}$ and $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{z}\rangle=0$, then $\mathbf{x} \perp \mathbf{z}$.
() (9) A set of n nonzero orthogonal vectors in R^{n} must be a basis for R^{n}.
() (10) Let $U=\operatorname{span}\left([1,0,1]^{t}\right)$ and $V=\operatorname{span}\left([0,1,0]^{t}\right)$, then $U \oplus V=R^{3}$.
(A) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z} \in R^{n}$ be orthonormal vectors, then $\|\mathbf{u}-3 \mathbf{v}+5 \mathbf{w}-\mathbf{z}\|_{2}=$ \qquad
(B) Let $\mathbf{x}=[1,2,1,2]^{t}, \mathbf{y}=[1,-1,-1,1]^{t}$, then the angle between \mathbf{x} and $\mathbf{y}=$ \qquad
(C) Let $V=\left\{[0,0, z]^{t} \mid z \in R\right\} \subset R^{3}$, then $V^{\perp}=$ \qquad
(D) Let $\mathbf{u}=[1,2,3,4]^{t}$, then the rank of $\mathbf{u u}^{t}=$ \qquad
(E) Let $\mathbf{a}=[1,1,1]^{t}, \mathbf{b}=[5,3,7]^{t}$, then the projection of \mathbf{b} along the line $\mathbf{a}=$ \qquad
(F) Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, the least squares error solution of $A \mathbf{x}=\mathbf{b}$ is
(G) The point on the line $y=2 x+1$ that is closest to $[5,2]^{t}$ is \qquad
(H) Let $\mathbf{x}=[1,1,1,1,1,1,1,1]^{t}, \mathbf{y}=[1,2,3,4,5,6,7,8]^{t}$, and $Q \in R^{8 \times 8}$ is orthogonal, then $\langle Q \mathbf{x}, Q \mathbf{y}\rangle=$ \qquad
(I) Let $\mathbf{y}=[-1,3,-5,1]^{t}$, then $\|\mathbf{y}\|_{1}+\|\mathbf{y}\|_{2}+\|\mathbf{y}\|_{\infty}=$ \qquad
(J) Let $f, g \in C[-1,1]$, and define the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$, then $\langle\sin 2 \pi x, \sin 2 \pi x\rangle=$ \qquad , $\langle\cos 4 \pi x, \cos 3 \pi x\rangle=$ \qquad
III.(10\%) Let $\mathbf{x} \in R^{n}$, show that $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$.
IV. $\mathbf{(1 0 \%}$) Let $L: R^{3} \rightarrow R^{2}$ be a linear transformation such that

$$
L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(a) Find the kernel of $L, \operatorname{Ker}(L)$.
(b) Evaluate $L\left(\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]\right)$.
V.(20\%) A Householder matrix H can be defined as $H=I-2 \mathbf{u u}^{t}$, where $\mathbf{u} \in R^{n}$ and $\|\mathbf{u}\|_{2}=1$.
(a) Show that H is symmetric.
(b) Show that H is orthogonal.
(c) Show that $H^{-1}=H$.
(d) Let $\mathbf{u}=\left[\frac{1}{2}, \frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right]^{t}$ and $U=I-2 \mathbf{u u}{ }^{t}$, compute U .
(e) Given any two unit vectors $\mathbf{x}, \mathbf{y} \in R^{n}$, that is, $\|\mathbf{x}\|_{\mathbf{2}}=\|\mathbf{y}\|_{\mathbf{2}}=\mathbf{1}$. Find a Householder matrix $T \in R^{n \times n}$ such that $T \mathbf{x}=\mathbf{y}$.

