Exam 1 for CS2334(01)
 October 23, 2017

Name: \qquad Student Number : \qquad Index : \qquad
$(15 \%)(1)$ Given

$$
A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
2 & 1 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & -1 \\
0 & 2 \\
3 & 1
\end{array}\right]
$$

(a) Find $A B$
(b) Find $(A B)^{-1}$
(c) Find $B^{t} A^{t}$
$\left(\mathbf{1 5 \%} \mathbf{)} \mathbf{(2)}\right.$ Let $C, D \in R^{3 \times 3}$ with $\operatorname{det}(C)=4$ and $\operatorname{det}(D)=5$. Find the value of
(a) $\operatorname{det}(C D)$
(b) $\operatorname{det}(3 C)$
(c) $\operatorname{det}(2 C D)$
(d) $\operatorname{det}\left(C^{-1} D\right)$
$(15 \%)(3)$ Let the matrices W and V be defined by the following Matlab commands, respectively.

$$
\begin{aligned}
& \mathrm{W}=[1,3,9 ; 1,4,16 ; 1,5,25] ; \\
& \mathrm{V}=[1,12,144 ; 1,13,169 ; 1,14,196] ;
\end{aligned}
$$

(a) Give the matrices W and V , respectively.
(b) Find $\operatorname{det}(W)$
(c) Find $\operatorname{det}(V)$
(15\%)(4) Let $P, Q, R \in R^{3 \times 3}$ be defined as

$$
P=I-\mathbf{e}_{2} \mathbf{e}_{1}^{t}, \quad Q=I-2 \mathbf{e}_{3} \mathbf{e}_{1}^{t}, \quad R=I-3 \mathbf{e}_{3} \mathbf{e}_{2}^{t}
$$

(a) Express P^{-1}, Q^{-1}, R^{-1} in a matrix form.
(b) Express $S=P Q R$ in a matrix form.
(c) Express $T=R^{-1} Q^{-1} P^{-1}$ in a matrix form.
$(25 \%)(5)$ A linear system of equations is given below.

$$
\begin{aligned}
2 x+y+z & =5 \\
4 x-6 y & =-2 \\
-2 x+7 y+2 z & =9
\end{aligned}
$$

(a) Express this system as $A \mathbf{x}=\mathbf{b}$, where $\mathbf{x}=[x, y, z]^{t}$. Show the augmented matrix for this system.
(b) Use Gaussian elimination and back substitution to solve this system of equations.
(c) Find $A=L U$, where L is unit lower- Δ and U is upper- Δ.
(d) Use Gaussian elimination with partial pivoting and back substitution to solve this system of equations.
(e) Give Matlab commands to solve $A \mathbf{x}=\mathbf{b}$ in (a).
$(15 \%)(6)$ Prove the following statements.
(a) A matrix A is idempotent if $A^{2}=A$. Show that if A is idempotent, so is $I-A$.
(b) Show that if A is idempotent, then $2 A-I$ is invertible and is its own inverse.
(c) Let U_{n} be the $n \times n$ matrix, each of whose entries is 1 . Show that for $n>1$,

$$
\left(I-U_{n}\right)^{-1}=I-\frac{1}{n-1} U_{n}
$$

