(20 pts) 1. Mark ☑ if the statement is true, and mark ✗ otherwise, or give your comments.

(☐) (a) Not every underdetermined linear system has a solution.

(☐) (b) Not every nonsingular matrix has an LU-decomposition.

(☐) (c) If λ is an eigenvalue of matrix A, then λ^m must be an eigenvalue of A^m.

(☐) (d) $L : R^m \to R^n$ is a linear transform, then $\text{Ker}(L)$ is a vector subspace of R^m.

(☐) (e) Let X, Y be 1-dimensional vector subspaces of R^2 and $X \perp Y$, then $R^2 = X \oplus Y$.

(✗) (f) The product of eigenvalues of A equals the product of diagonal elements of A.

(✗) (g) All eigenvalues of a real symmetric matrix must be distinct.

(✗) (h) Every nonsingular square matrix can be diagonalized.

(✗) (i) Let $A, B \in R^{n\times n}$ be symmetric, then $(A + B)(A - B) = A^2 - B^2$.

(✗) (j) Similar matrices always have the same eigenvectors.

(☐) (k) Let $x \in R^n$ with $\|x\|_2 = 2$. If $A \in R^{n\times n}$ is orthogonal, then $\|Ax\|_2 = 2$.
Choose the best solution for each of the following questions.

(2) (a) Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n \) be orthonormal vectors, then \(\|\mathbf{u} - 2\mathbf{v} + 2\mathbf{w}\|_2 = ? \)

(1) 1, (2) 3, (3) 5, (4) 5n, (5) none.

(4) (b) Define \(E(a) = I - ae_2e_1^t \in \mathbb{R}^{n \times n} \) if \(a \neq 0 \), then the inverse matrix of \(E(a) \) is

(1) \(E(a^{-1}) \), (2) \(E(-a^{-1}) \), (3) \(E(a) \), (4) \(E(-a) \), (5) none.

(4) (c) Let \(A \in \mathbb{R}^{n \times n} \) have rank \(r \), then \(\dim(\text{Null}(A)) + \dim(\text{R}(A)) = ? \)

(1) \(m - r \), (2) \(n - r \), (3) \(m \), (4) \(n \), (5) none.

(1) (d) Let \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \), \(\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), the least squares solution of \(Ax = b \) is

(1) \([1, 1]^t \), (2) \([1, 0]^t \), (3) \([0, 1]^t \), (4) \([-1, -1]^t \), (5) none.

(3) (e) Let \(H_1, H_2, \cdots, H_k \in \mathbb{R}^{n \times n} \) be Householder matrices. Then \(\det(\prod_{j=1}^k H_j) = ? \)

(1) 1, (2) \(-1\), (3) \((-1)^k\), (4) \((-1)^n\), (5) none.

(2) (f) Let \(A \in \mathbb{R}^{n \times n} \) have eigenvalues 1, 3, 5, \(\cdots \), \(2n - 1 \). Then the trace of \(A \) is

(1) \(n \), (2) \(n^2 \), (3) \(n(n - 1) \), (4) \(n(n + 1) \), (5) none.

(1) (g) Let \(A \in \mathbb{R}^{3 \times 3} \) have \(\lambda(A) = \{1, 2, 5\} \). What is \(\lambda(A^{-1}) \)?

(1) \(\{1, 0.2, 0.5\} \), (2) \(\{-1, -2, -5\} \), (3) \(\{1, 8, 125\} \), (4) \(\{0, 1, 4\} \), (5) none.

(3) (h) Let \(V = \text{Span}(\mathbf{e}_1, \mathbf{e}_3) \leq \mathbb{R}^n \), then \(\dim(V^\perp) = ? \)

(1) 1, (2) 2, (3) \(n - 2 \), (4) \(n - 1 \), (5) none.

(3) (i) Let \(\mathbf{x} = [2, 0, -2]^t \), \(\mathbf{y} = [0, 2, -2]^t \), then the angle between \(\mathbf{x} \) and \(\mathbf{y} \), \(\angle(\mathbf{x}, \mathbf{y}) \) is

(1) \(\frac{\pi}{6} \), (2) \(\frac{\pi}{4} \), (3) \(\frac{\pi}{3} \), (4) \(\frac{\pi}{2} \), (5) none.

(2) (j) Let \(A \in \mathbb{R}^{3 \times 3} \) have eigenvalues 3, 4, 6 what are the eigenvalues of \((A - 2I)^{-1} \)?

(1) \(\{1, 2, 4\} \), (2) \(\{1, 0.5, 0.25\} \), (3) \(\{2, 0.5, 0.25\} \), (4) \(\{5, 6, 8\} \), (5) none.
(40 pts) 3. Let \(A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} \).

(a) Find the eigenvalues \(\lambda_1 \) and \(\lambda_2 \) of matrix \(A \) and their corresponding unit eigenvectors \(u_1 \) and \(u_2 \).

(b) Find the trace of \(A \) and the determinant of \(A \).

(c) Let \(U = [u_1, u_2] \), compute \(U^tAU \).

(d) Find the eigenvalues \(\mu_1 \) and \(\mu_2 \) of matrix \(A^{-1} \).

(e) Find the trace of \(A^{-1} \) and the determinant of \(A^{-1} \).

(f) Do the same problems of (a \(\sim\) e) for matrix \(B \).

Ans: \(p(A) = (\lambda + 1)(\lambda + 3) = 0 \).

\((a) \lambda_1 = -1, \ u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \) and \(\lambda_2 = -3, \ u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \) and

\((b) \ tr(A) = \lambda_1 + \lambda_2 = -4 \) and \(det(A) = \lambda_1 \times \lambda_2 = 3 \).

\((c) \ U = [u_1, u_2], \ U^{-1}AU = U^tAU = \text{diag}(-1, -3). \)

\((d) \mu_1 = -1 \) and \(\mu_2 = -\frac{1}{3} \) for \(A^{-1} \).

\((e) \ tr(A^{-1}) = -\frac{4}{3} \) and \(det(A^{-1}) = \frac{1}{3}. \)

B-Ans: \(p(B) = (\lambda - 1)^2 = 0 \).

\((Ba) \lambda_1 = \lambda_2 = 1, \ u_1 = u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \)

\((Bb) \ tr(B) = \lambda_1 + \lambda_2 = 2 \) and \(det(B) = \lambda_1 \times \lambda_2 = 1 \).

\((Bc) \ U = [u_1, u_2], \ U^tBU = [1, 1; 1, 1] \) and

\((Bd) \mu_1 = 1 \) and \(\mu_2 = 1 \) for \(B^{-1} \).

\((Be) \ tr(B^{-1}) = 2 \) and \(det(B^{-1}) = 1. \)
(30 pts) 4. Let \(A = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \), then \(A^2 = \begin{bmatrix} 5 & -4 & 0 \\ -4 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix} \), and define \(\alpha = \min_{\|x\|_2=1} \{ x^t A^5 x \} \), \(\beta = \max_{\|y\|_2=1} \{ y^t A^5 y \} \).

(a) Find the eigenvalues \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) of matrix \(A \) and their corresponding unit eigenvectors \(u_1, u_2, \) and \(u_3. \)

(b) Find the eigenvalues \(\mu_1, \mu_2, \) and \(\mu_3 \) of matrix \(A^2 \) and their corresponding unit eigenvectors \(v_1, v_2, \) and \(v_3. \)

(c) Find the eigenvalues \(\tau_1, \tau_2, \) and \(\tau_3 \) of matrix \(A^5 \) and their corresponding unit eigenvectors \(w_1, w_2, \) and \(w_3. \)

(d) Compute \(\alpha \) and \(\beta. \)

Ans: \(p(A) = (\lambda + 1)(\lambda + 3)(\lambda - 2) = 0. \)

\((a) \quad \lambda_1 = -1, \ u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \lambda_2 = -3, \ u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \lambda_3 = 2, \ u_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \)

\((b) \quad \mu_1 = (-1)^2 = 1, \ v_1 = u_1, \quad \mu_2 = (-3)^2 = 9, \ v_2 = u_2, \quad \text{and} \quad \mu_3 = 2^2 = 4, \ v_3 = u_3 \text{ for matrix } A^2. \)

\((c) \quad \tau_1 = (-1)^5 = -1, \ w_1 = u_1, \quad \tau_2 = (-3)^5 = -243, \ w_2 = u_2, \quad \text{and} \quad \tau_3 = 2^5 = 32, \ w_3 = u_3. \)

\((d) \quad \alpha = (-3)^5 = -243 \text{ and } \beta = (2)^5 = 32. \)
(10 pts) 5. Let $A \in \mathbb{R}^{n \times n}$ and $A^t = A$, show that the eigenvectors corresponding to distinct eigenvalues are orthogonal.

(Proof) Let λ and μ be two distinct eigenvalues of A with corresponding eigenvectors x and y, then we have

$$Ax = \lambda x \quad \rightarrow \quad y^t Ax = \lambda y^t x = \lambda \langle x, y \rangle$$

and

$$Ay = \mu x \quad \rightarrow \quad x^t Ay = \mu x^t y = \mu \langle x, y \rangle$$

Since $A^t = A$, then $(y^t Ax)^t = x^t A^t y = x^t Ay$, thus $\lambda \langle x, y \rangle = \mu \langle x, y \rangle$, which implies that $(\lambda - \mu) \langle x, y \rangle = 0$ because $\lambda \neq \mu$, and hence $\langle x, y \rangle = 0$ or say, x and y are orthogonal.
(20 pts) 6. Let \(A = [a_{ij}] \in \mathbb{R}^{m \times n} \), and define \(\|A\|_1 = \text{Max}_{\|u\|_1 = 1} \{\|Au\|_1\} \). Show that

\[
\|A\|_1 = \text{Max}_{1 \leq j \leq n} \left\{ \sum_{i=1}^{m} |a_{ij}| \right\}
\]

(Proof) Let \(\sum_{i=1}^{m} |a_{iK}| = \text{Max}_{1 \leq j \leq n} \{\sum_{i=1}^{m} |a_{ij}|\} \), for any \(x \in \mathbb{R}^n \) with \(\|x\|_1 = 1 \), we have

\[
\|Ax\|_1 = \sum_{i=1}^{m} |\sum_{j=1}^{n} a_{ij} x_j| \\
\leq \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij} x_j| \\
= \sum_{j=1}^{n} |x_j| |\sum_{i=1}^{m} a_{i1} x_j| \\
= \sum_{j=1}^{n} |x_j| \{\sum_{i=1}^{m} |a_{ij}|\} \\
\leq \sum_{j=1}^{n} |x_j| \{\sum_{i=1}^{m} |a_{iK}|\} \\
= \{\sum_{j=1}^{n} |x_j|\} \{\sum_{i=1}^{m} |a_{iK}|\} \\
= \|x\|_1 \{\sum_{i=1}^{m} |a_{iK}|\} \\
= \sum_{i=1}^{m} |a_{iK}|
\]

Thus,

\[
\text{Max}_{\|u\|_1 = 1} \{\|Au\|_1\} \leq \text{Max}_{1 \leq j \leq n} \left\{ \sum_{i=1}^{m} |a_{ij}| \right\} = \sum_{i=1}^{m} |a_{iK}| \text{ for a } K, \ 1 \leq K \leq m.
\]

In particular, when \(x \in \mathbb{R}^n \) is selected as \(x = e_K \), that is, \(x_K = 1 \), and \(x_i = 0 \ \forall \ 1 \leq i \leq n, \ i \neq K \), then the above equality holds, which completes the proof.
(30 pts) 7. Let \(b = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix} \), \(C = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \). Writing a single Matlab command to solve each of the following questions for \(a \sim h \) and answer the questions for \(i \sim h \).

(a) Randomly generate a 3 by 3 matrix \(A \) whose elements are integers in \([0, 10)\). \(A = \text{fix}(10*\text{random}('\text{unif}',0,1,3,3)) \)

(b) Input vector \(b \).
\((b = [1; -5; 4]) \)

(c) Solve the linear system \(Ax = b \) for \(x \).
\((x = A\backslash b) \)

(d) Input matrix \(C \) given above.
\((C = [-2,1,0; 1,-2,0; 0,0,2]) \)

(e) Compute the characteristic polynomial for \(C \). \(p=\text{poly}(C) \)

(f) Compute the eigenvalues and eigenvectors of \(C \). \([U, D]=\text{eig}(C) \)

(g) Compute the trace of matrix \(C \). \(\text{trace}(C) \)

(h) Compute the rank of matrix \(C \). \(\text{rank}(C) \)

(i) Compute the LU – decomposition of the matrix \(C \). \([L,U,P]=\text{lu}(C) \)

(j) Compute the QR – factorization of the matrix \(C \). \([Q, R]=\text{qr}(C) \)

(k) What is the result of (e) ? \(p=[1,2,5,6] \)

(l) What is the result of (f) ? -3, -1, 2, also see problem 4 for the corresponding eigenvectors.

(m) What is the result of (g) ? -2

(n) What is the result of (h) ? 3

(o) What is the result of (i) ?

(p) What is the result of (j) ?