Solutions for Test 3
December 13, 2010

(20%) 1. Mark ☐ if the statement is true, and mark × otherwise.

(x) (a) A set of nonzero linearly independent vectors must be mutually orthogonal.

(x) (b) A set of nonzero orthonormal vectors in \mathbb{R}^n must be a basis.

(o) (c) Every square matrix can be factored as QR, where Q is orthogonal and R is upper-Δ.

(x) (d) If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ and $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{z} \rangle = 0$, then $\langle \mathbf{x}, \mathbf{z} \rangle = 0$.

(x) (e) If U, V, W are vector subspaces of \mathbb{R}^n such that $U \perp V$ and $V \perp W$, then $U \perp W$.

(o) (f) Let $U = \text{span}([1, -1]^t)$ and $V = \text{span}([1, 1]^t)$, then $R^2 = U \oplus V$.

(o) (g) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be linearly independent vectors in \mathbb{R}^3, then Gram-Schmidt orthogonalization process can construct an orthonormal basis for \mathbb{R}^3.

(o) (h) Let $H_1, H_2, \cdots, H_k \in \mathbb{R}^{n \times n}$ be Householder matrices, then $\prod_{j=1}^{k} H_j$ is symmetric and orthogonal.

(x) (i) A Householder matrix is symmetric, orthogonal, and has determinant 1.

(o) (j) In \mathbb{R}^n, if \mathbf{p} is the projection of \mathbf{b} along the line \mathbf{a}, then $\langle \mathbf{b} - \mathbf{p}, \mathbf{a} \rangle = 0$.

(x) (k) If \mathbf{x} and \mathbf{y} are nonzero vectors in \mathbb{R}^n, then the vector projection of \mathbf{x} onto \mathbf{y} is equal to the vector projection of \mathbf{y} onto \mathbf{x}.
(40%) 2. Answer the following questions

(A) Let \(u, v, w, z \in \mathbb{R}^n \) be orthonormal vectors, then \(\|u - 3v + 5w - z\|_2 = 6 \)

(B) Let \(x = [1, 2, 1, 2]^t, y = [1, -1, -1, 1]^t \), then the angle between \(x \) and \(y = \frac{\pi}{2} \)

(C) Let \(V = \{[b, 0, a]^t | a, b \in \mathbb{R}\} \subset \mathbb{R}^3 \), then \(V^\perp = \{\beta [0, 1, 0]^t\} \)

(D) Let \(u = [1, 2, 3, 4]^t \), then the rank of \(uu^t = 1 \)

(E) Let \(a = [1, 1, 1]^t, b = [1, 3, 8]^t \), then the projection of \(b \) along the line \(a = 4a \)

(F) Let \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \ b = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), the least squares solution of \(Ax = b \) is \([1, 1]^t \)

(G) The point on the line \(y = 2x + 1 \) that is closest to \([5, 2]^t \) is \([1.4, 3.8]^t \)

(H) Let \(x = [1, 1, 1, 1, 1, 1, 1, 1]^t, y = [1, 2, 3, 4, 5, 6, 7, 8]^t \), and \(Q \in \mathbb{R}^{8 \times 8} \) is orthogonal, then \(\langle Qx, Qy \rangle = 36 \)

(I) Let \(y = [-1, 3, -5, 1]^t \), then \(\|y\|_1 + \|y\|_2 + \|y\|_\infty = 21 \)

(J) Let \(f, g \in C[-1, 1], \) and define the inner product \(\langle f, g \rangle = \int_{-1}^1 f(x)g(x)dx \), then \(\langle \sin 2\pi x, \sin 2\pi x \rangle = 1, \langle \cos 4\pi x, \cos 3\pi x \rangle = 0 \).
(10%) 3. Let $x \in \mathbb{R}^n$, show that $\|x\|_\infty \leq \|x\|_2 \leq \|x\|_1$.

(10%) 4. Let $x, y \in \mathbb{R}^n$, show that $(x - y) \perp (x + y)$ iff $\|x\|_2 = \|y\|_2$.

(20%) 5. Let $u, v \in \mathbb{R}^n$ and $\|u\|_2 = \|v\|_2 = 1$, define $H = I - 2uu^t$.

(a) Show that $H^t = H$ (H is symmetric).

(b) Show that $H^tH = I$ (H is orthogonal).

(c) Show that $det(H) = -1$.

(d) Let $u = [\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}]^t$ and $U = I - 2uu^t$, compute U.

(e) Find a Householder matrix $A \in \mathbb{R}^{n \times n}$ such that $Au = v$.