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Abstract Advances at an unprecedented rate in computer hardware and networking
technologies have made the many-core computing affordable and readily available
in a matter of few years. Nonetheless, it incurs challenges to programmers to build
scalable parallel software. Optimizations of parallel programs for a many-core plat-
form are viewed as a multifaceted problem, where system and architectural factors
should be taken into account. In this paper, we tackle this problem by implement-
ing parallel programs with different available programming paradigms and evalu-
ate application behaviors on TILE64 many-core platform. That is, we investigate a
hybrid producer-write plus consumer-read shared memory programming paradigm
for the implementation of master–worker video decoder and encoder in the referred
many-core platform. Experimental results show that the proposed implementation has
achieved competitive performance speedup, scaling well with the number of available
cores and up to four times of performance improvement over other implementations
on the decoding of sample 1080P video.
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1 Introduction

In recent years, the industry underwent a transition from single-core processors
to multi-core or many-core processors due to thermal and power envelope restric-
tions [1]. While the trend of processor manufacturing is to increase the number of
cores rather than clock frequency [2, 3], software developers can no longer rely on
the so-called ”free lunch” [4] that automatically makes existing programs run faster
on processors clocked at higher frequencies.

In order to make performance of a program scaling well with the number of avail-
able cores on a multi-core or many-core platform, existing software need to be mod-
ified or rewritten from ground up [5, 6]. Efforts involving parallelization of an appli-
cation are twofold, known as design and implementation. The former is about finding
concurrency in a given application and to derive algorithms and program structures
to make it run faster, while the latter is about utilization of available programming
resources on the designated parallel platform to realize the designed algorithm and
structure. The available programming resources include programming language, pro-
gramming paradigm, API (application programming interface), among others.

Due to the flexibility of options available, there may exist several implementations
for a single design on a platform. Performance and scalability characteristics of com-
pleted applications may vary with different implementations. Thus, it is important
to set guidelines for developers to follow in order to produce better programs on a
given platform. The purpose of this paper is to discuss and demonstrate how pro-
gramming paradigm correlates with issues in performance and scalability of software
implementations on a many-core platform.

TILE64 is a family of general purpose many-core processors designed and manu-
factured by Tilera [7]. Figure 1 shows the architecture overview of a TILE64 proces-
sor. A TILE64 processor contains a two-dimensional array of 64 identical processor
cores interconnected via multiple on-chip mesh networks named iMesh. Each indi-
vidual core in a TILE64 processor is referred to as a tile. The iMesh is designed to
be scalable to a large number of cores while maintaining low-latency communica-
tion between tiles. Tilera provides programmers with a set of proprietary APIs called
iLib to write application programs. The iLib API provides both shared memory and
message passing primitives for implementation of inter-process communication. The
availability of different and varied implementation options adds both flexibility and
complexity in building parallel programs on this platform.

Video streaming applications are the applications to process video streams. Ex-
amples of such applications are video encoders [8], video decoders [9], video
transcoders [10], object detection and tracking [11], among others widely available.
These applications are both computation intensive and data intensive in nature, which
makes them intrinsically suitable for parallelization.

The master–worker model is very useful in parallel programming. It is often
adopted when there is a need to dynamically balance workloads among available pro-
cessors [12, 13]. Figure 2 shows a generic master–worker model, which consists of
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Efficient programming paradigm for video streaming processing 825

Fig. 1 TILE64 processor
architecture overview

Fig. 2 A master–worker model

two main parts, task distribution and result collection. In the task distribution part, the
master generates a set of tasks and distributes them next to the workers. The master
can be seen as a producer and the workers can be seen as consumers. Notwithstand-
ing, in the result collection part, the master collects computation results generated by
the workers. Thus, the workers can be seen as producers and the master can be seen
as a consumer.

In order to implement a master–worker based video streaming application on
TILE64, the efficiency of handling data communications between master and workers
is crucial. Since the TILE64 provides both shared memory and message passing com-
munication primitives, the communication of a master–worker based video streaming
application can be implemented by shared memory or message passing. Therefore,
efficient management of the communications between master and worker processes is
required to develop a high performance application with efficiency on this platform.
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This study explores two programming paradigms, consumer-read programming
(CRP) and producer-write programming (PWP) for implementation of shared mem-
ory communication between master and worker processes. We have implemented
master–worker video stream encoders and decoders with different communication
schemes to compare their performance and scalability. Experimental results show
that task distribution is best implemented with producer-write programming, while
result collection is best when implemented with consumer-read programming.

The rest of this paper is organized as follows. Section 2 provides background
knowledge of TILE64 and the approach of carrying out shared memory and message
passing communication between two processes on the TILE64. In Sect. 3, a master–
worker stream processing system is described. Section 4 introduces the consumer-
read programming, the producer-write programming, and variations of shared mem-
ory implementations of a master–worker stream processing system. In Sect. 5, we
implement parallel Motion JPEG decoder and encoder with different programming
paradigms and compare performance of the implementations. Finally, concluding re-
marks and future scope of this work are given in Sect. 6.

2 Background

2.1 TILE64 processor

In this study, we apply TILE64 as an example of the many-core architecture. The
TILE64 processor is a many-core processor with 64 cores featured as an array of
64 identical processor cores (each referred to as a tile) interconnected via on-chip
two-dimensional mesh network. The TILE64 is fully programmable using standard
ANSI C under Linux environment, including a set of proprietary APIs called iLib.
The iLib library supports two communication mechanisms, shared memory and dis-
tributed memory, for processes running on different cores to communicate with each
other.

The TILE64 platform has an on-chip network named iMesh to interconnect all 64
processor cores. All inter-process communications in a multi-process program will
then be translated to underlying network traffic, which is fully transparent to pro-
grammers. As a process is executing load/store instructions, it is not necessary to
have the knowledge of the underlying network traffic. Thus, when multiple processes
are concurrently accessing memory devices, the generated network traffic can some-
times overwhelm the network, causing traffic congestions and routing delays, and
will directly affect program performance. The inter-process communication should
generate as little network traffic as possible, so the overall network performance on
this many-core platform would not be pushed down.

A previous study [14] suggests that programmers implement applications in such
a way that producer processes always write data directly into memory addresses
shared by consumer processes to avoid unnecessary cache coherent traffics on the
memory network. In the literature, there are also researches discussing scalability
issues on many-core processors featuring on-chip networks or multiple memory con-
trollers [15, 16]. In our previous work [17], we have shown that it is necessary to
consider the memory hierarchy and on-chip networks in order to develop high per-
formance applications on the TILE64 platform.
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Fig. 3 Sharing of an integer on TILE64 between two processes

In this study, a tile runs one process at any given time. A process bound to a tile at
the initialization period will keep running on the same tile to its end of life.

2.2 Shared memory communication on TILE64

In TILE64, shared memory communication allows each process in a parallel appli-
cation to load/store values from/to a globally visible region of memory. Concurrent
accesses to shared objects must be synchronized with mutex (mutual exclusion) locks
to prevent inconsistent states.

Both the Linux and iLib programming environments provide tools for allocating
and synchronizing accesses to the shared memory. Linux allows programs to allocate
and synchronize using the standard Unix shared memory and Pthreads APIs, while
iLib supports a special function for shared memory allocation, malloc_shared() as
well as an implementation of a Pthreads-style mutex lock. To use iLib to implement
shared memory mechanisms in a program, the process that shares information calls
the malloc_shared() function to get an address pointing to a block of shared mem-
ory. Then, the process notifies other processes on the location of shared memory by
sending them messages containing this address.

Figure 3 shows an example on the use of iLib to create an integer object shared
between two processes. The initialization steps are as follows:

– There are two cores, each of which executes one process;
– Process 0 allocates a region of memory to hold one integer using malloc_shared();
– The malloc_shared() function returns a value x, which is the address of the shared

integer. The value of x is stored in an integer pointer p in process 0;
– Process 0 sends content of p to process 1;
– Process 1 stores this address with integer pointer q .

After the above initialization sequence, both processes 0 and 1 will be able to load
from and store to this shared integer in the same way as normal variables. Any update
to ∗q made by process 1 can be seen by process 0 using ∗p, and back and forth is
also valid.

2.3 Message passing communication on TILE64

Message passing communication uses point-to-point communication to copy se-
quences of data items directly from one process to another without going through
the global shared memory. This type of communication requires one process to send
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pieces of data to another process explicitly, which explicitly receives them. Message
passing communication can simplify programs with clear producer–consumer rela-
tionships, since there is no need to synchronize objects in shared memory. A process
intending to send content of a buffer can call ilib_msg_send(), the receiving process
must also call ilib_msg_receive() to receive the data.

2.4 Related work

The master–worker model has been successfully used in many research areas. It
is often used in large distributed computing environments such as clusters [18],
grids [19], clouds [20] and even on petascale resources [21]. In addition to appli-
cations in distributed computing environments, with the recent availability of multi-
core and many-core processors, the master–worker model can also be adopted in
smaller-scaled systems [22]. Parallel software libraries such as Charm++ [23] and
MapReduce [24] also utilize the master–worker paradigm. From the literature we can
see that the master–worker model is very flexible and can be used on a wide variety
of applications and platforms/systems.

There are some examples by using the master–worker model for video stream-
ing applications. In Ref. [10], the parallelization of the H.261 video coding based on
the master–worker model on the IBM SP2 multiprocessor system is discussed, and
the master–worker model is utilized to implement a real-time video player that oper-
ates on a tiled-display system consisting of multiple PCs to provide a very large and
high resolution display in [25]. Master–worker model implemented as a hardware-
accelerated system-on-chip solution for MPEG-4 decoding is presented in [9], and
the master–worker model used for live video and audio media multicasting in a wire-
less ad hoc network environment is presented in [26]. A distributed high performance
video processing architecture based on a master–worker model in the cloud comput-
ing environment is presented in [27], and a parallel video face recognition system is
built upon a group of personal computer using the master–worker model in [28].

Although there is a lot of literature that discusses the application of the master–
worker model on different systems or platforms, only a few are related to the ap-
plication of the master–worker model on many-core platforms. We believe that this
is due to availability of such systems in academic and research communities and its
wider spread. Since the number of cores in commercial processors will keep increas-
ing in the foreseeable future, it is important and necessary to discuss the problem of
mapping traditional models onto multi- and many-core platforms.

3 Master–worker stream processing

In general, video stream processing applications handle video data stream. Some ex-
amples of such applications are video encoders, decoders, and transcoders. Given a
data stream to be processed by a video stream processing application, we assume that
the stream can be divided into n sequential segments that can be independently pro-
cessed and outputted. The input data stream can be represented as a set of sequenced
data items, fi1 to fin , and the output data stream is represented as fo1 to fon . Assume
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Fig. 4 Perfect task scheduling
of stream processing on 4
processors

that the application is run on a processor, each segment takes time tn to be processed
from input format to output format. The time needed to process all segments in the
stream is

n∑

1

ti (1)

The ideal case of processing such data stream using p processors would be similar
to the one shown in Fig. 4. In such ideal case, t1 = t2 = · · · = tn and n is an exact
multiple of p. Thus, the time needed to process all segments becomes

∑n
1 ti

p
(2)

This leads to a perfect speedup of p. In reality, it may take variable amount of time
to process different data segments, and n is commonly not an exact multiple of p.

One way to speed up data stream processing on multiple processors is to use a
master–worker scheme as underlying parallelization structure. A master–worker sys-
tem consists of a master process managing a set of worker processes. The master
process distributes tasks to a set of subordinate worker processes and later collects
computed results. There are two task pools in a master–worker system, the pool of
pending tasks and the pool of completed tasks. Once a worker finishes a task, the
worker process fills the result to the pool of completed tasks. The master process
then fetches results from the pool of completed tasks and outputs the results.

Figure 5 illustrates a master–worker streaming system that consists of one master
process and 4 worker processes. The master process reads in the input stream and
divides the input stream into smaller chunks of data that can be independently pro-
cessed. After initializing, all worker processes in this system keep monitoring the

Fig. 5 A master–worker streaming system
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Algorithm 1 Master-worker stream processor

pool of pending tasks and check whether there are present workloads. If not empty,
any available worker can fetch (drain) a task from the pool and start to process it.
Once such an execution is completed, it fills the pool of completed tasks with the
results of current task. Since completed tasks arrive in arbitrary order, master process
keeps an output sequence counter. The counter is used to select the next completed
task form the pool with correct sequence number to be output to the output stream.
Algorithm 1 shows the pseudo code of a master–worker stream processor.

During the progress of task distribution, a master process is considered a pro-
ducer process and worker processes are considered consumer processes. Meanwhile,
one-to-many communication is raised. On the other hand, in the progress of result
collection, worker processes are considered producer processes and a master process
is considered a consumer process. Meanwhile, many-to-one communication is raised.

The total time to process all tasks can be derived as

ttotal = tread + tfill + tdrain + twrite + tcomp + tsync + tidle (3)

Author's personal copy
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Since the time spent by workers essentially overlaps with the time spent by the master,
the total time takes into consideration solely the time spent by the master. A list
containing detailed description of components in (3) follows:

– tread: time master spent reading input data from input stream to memory;
– tfill: time master spent storing all pending tasks into pool of pending tasks;
– tdrain: time master spent loading all pending tasks from pool of completed tasks;
– twrite: time master spent writing output data from memory to output stream;
– tcomp: time master spent on computation such as decomposing input data and com-

posing output data;
– tsync: time master spent waiting for mutex locks to gain access to shared objects;
– tidle: time master spent idling.

Of all the above 7 components, tread, twrite and tcomp can be seen as constants for
a given input stream; that is, these three timing values are not affected by system
configuration variables such as number of workers, size of task pools and how inter-
process communications are carried out.

To look into more detail of the performance characteristics we further derive:

tfill = Sinput

ωmaster→pending
, (4)

where Sinput is the total size of input data and ωmaster→pending is the average through-
put for master to store data into the pool of pending tasks.

tdrain = Soutput

ωmaster←completed
, (5)

where Soutput is the total size of output data and ωmaster←completed is the average
throughput for master to load data from the pool of completed tasks. From (4) and (5)
we know that by increasing ωmaster→pending and ωmaster←completed, tfill and tdrain can
be shortened.

As for the synchronization time tsync, it can be seen as a function of two variables:

tsync = F(p, q), (6)

where p is the number of shared objects in the system and q the number of partic-
ipating processes intending to access the shared objects. Usually the tsync will grow
rapidly with the increment of p and q .

The master idle time tidle will come into place when both of the following
conditions are true: (a) pool of pending tasks is full, and (b) pool of completed
tasks is empty. The occurrence rate of condition (a) is decided by pool size,
ωmaster→pending and ω(worker←pending)aggregated, where the latter represents aggregated
throughput for all workers to load data from the pool of pending tasks. Similarly,
the occurrence rate of condition (b) is decided by pool size, ωmaster←completed and
ω(worker→completed)aggregated, where the latter represents aggregated throughput for all
workers to store data to the pool of completed tasks. Ideally, the tidle can be eliminated
altogether with properly configured pool size and maintaining the condition:

⎧
⎪⎨

⎪⎩

ω(worker←pending)aggregated > ωmaster→pending

and

ω(worker→completed)aggregated > ωmaster←completed

(7)
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The throughput ω values in (7) will be affected by number of processes in the system
and how the data communications are carried out between processes, which will be
further explored in Sect. 4.

4 Programming paradigms for TILE64 platform

Two shared memory programming paradigms, the consumer-read programming
(CRP) and the producer-write programming (PWP), are introduced as follows. Com-
munication between two processes by using shared memory mechanisms can be
achieved by allowing a process to allocate a block of shared memory and then ex-
change the address of shared memory between processes, which means that all par-
ticipating processes in the data communication are able to directly load value from or
store value to the specified shared memory addresses.

4.1 Consumer-read programming (CRP)

When a producer process sends data to a consumer process, it writes the data into
memory address shared by the producer process itself. The consumer process then
reads the data from this shared address. The term consumer-read implies the action:
“consumer reads data from producer shared memory.”

Figure 6 depicts the initialization of CRP, where producer process allocates a re-
gion of shared memory to accommodate shared objects. Producer process then noti-
fies consumer process on the location of shared memory, so that producer checks and
fills the shared memory if it is not full. Consumer keeps checking the content in the
shared memory and consumes it if the shared memory is not empty.

4.2 Producer-write programming (PWP)

When a producer process sends data to a consumer process, it writes the data into the
memory address shared by the consumer process. The term producer-write implies
the action: “producer writes data to consumer shared memory.”

In Fig. 7, a consumer process allocates a region of shared memory to accommodate
shared objects. Similarly to the above discussion, the consumer process then notifies
a producer process on the location of shared memory, and the producer checks and
fills the shared memory when it is empty. The consumer keeps checking the content
in the shared memory and consumes it when the content is valid.

Fig. 6 Illustration of CRP
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Fig. 7 Illustration of PWP

4.3 Implementation of master–worker system

There are multiple ways of using iLib shared memory primitives to implement a
master–worker stream processing system. The major difference is on the implemen-
tation of two functions, drain() and fill(). Depending on the shared memory program-
ming paradigm used, the two pools of tasks can reside in memory addresses shared
by either master process or worker processes. The shared memory implementation
algorithms are given in Algorithms 2, 3, 4 and 5.

(1) CRP + CRP: Both pools are implemented by using CRP. The pool of pending
tasks resides in memory shared by master process. And all of the worker shared
memory combined forms the pool of completed tasks,

(2) CRP + PWP: The pool of pending tasks is implemented by using CRP and the
pool of completed tasks is implemented by using PWP. Both pools of pending
tasks and completed tasks reside in memory shared by master process,

(3) PWP + CRP: The pool of pending tasks is implemented by using PWP and the
pool of completed tasks is implemented by using CRP. Both pools of pending
tasks and completed tasks are actually shared memory blocks distributed among
all workers processes,

(4) PWP + PWP: Both pools are implemented by using PWP. And all of the worker
shared memory combined forms the pool of pending tasks, and the pool of com-
pleted task resides in memory shared by master process.

(5) MP: There is no shared pool for tasks and results. In task distribution, the
master sends works to workers directly by using iLib message passing API
ilib_msg_send(). In result collection, the workers use ilib_msg_send() to send
results to the master.

5 Experimental results

We use the master–worker structure to make parallel Motion JPEG decoders and en-
coders by modifying source codes from the MJPEG Tools [29], as in Sect. 3. Later,
as discussed in Sect. 4.3, there are 5 implementation options: CRP + CRP (R + R),
CRP + PWP (R + W), PWP + CRP (W + R), PWP + PWP (W + W) and MP. There-
fore, we have 5 implementations for decoder and another 5 implementations for en-
coder. One fact to note here is that the PWP+PWP implementation can be considered
as an implementation of the remote store programming (RSP) as described in [14].
Therefore, the performance of PWP + PWP can be seen as performance obtained by
implementing the master–worker decoder/encoder using a programming paradigm
(RSP) described in an existing literature.
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Algorithm 2 CRP task distribution

We executed the implemented decoders/encoders on a TILExpress-20G card,
which is a TILE64 development platform featured with a TILE64 processor running
at 700 MHz and 4 GB of DDR2-800 memory. The advantage of TILE64 is that it
delivers better performance per watt comparing to other multi-core platforms, for the
TILE64 processor at maximum draws only 22 W power.

Each of the decoders/encoders decodes/encodes 4 video files of different resolu-
tions. Table 1 lists the video test files, which are placed in a RAM file system. Since
tiles located in the last row are reserved for system use and not available for users to
run programs on the TILE64 hardware platform, the maximum number of tiles we
used is 56 (8 columns by 7 rows.)

We measured both decoder and encoder performance from using 2 tiles (1 master
process with 1 worker process) to 56 tiles (1 master process with 55 worker pro-
cesses), to obtain a total of 2200 sets of timing data. Table 2 shows the number of
performance data sets collected from among different configurations.

Author's personal copy
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Algorithm 3 PWP task distribution

Table 1 Motion JPEG test files
used File name Format Resolution Frames

Deadline CIF 352 × 288 1374

City 4CIF 704 × 576 600

Stockholm 720P 1280 × 720 604

Factory 1080P 1920 × 1088 1339

Figures 8 to 15 show the performance of decoders and encoders in different testing
cases. These data are obtained by recording time spent on main decoding/encoding
loop in the decoder/encoder. Since parallel versions contain at least one master pro-
cess and one worker process, the minimum number of cores required to run these
parallel decoders/encoders is 2. In the case that a parallel decoder/encoder is run-
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Algorithm 4 CRP result collection

Table 2 Performance data sets
obtained Tasks Programming paradigms

R + R R + W W + R W + W MP

Decode CIF 55 55 55 55 55

Decode 4CIF 55 55 55 55 55

Decode 720P 55 55 55 55 55

Decode 1080P 55 55 55 55 55

Encode CIF 55 55 55 55 55

Encode 4CIF 55 55 55 55 55

Encode 720P 55 55 55 55 55

Encode 1080P 55 55 55 55 55

ning using 2 tiles, only the tile that executes the worker process is responsible for the
decoding/encoding job.

For reference, performance of video encoding on similar platform discussed in
existing literature shows that a speedup of 23.9 can be obtained when encoding 720P
video clips using 56 cores [30].

Author's personal copy
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Algorithm 5 PWP result collection

Table 3 Decoder
performance—max frame rate Video size Programming paradigms

R + R R + W W + R W + W MP

CIF 1357.74 790.76 1617.44 1069.95 715.57

4CIF 462.63 209.72 518.88 267.21 204.34

720P 194.82 88.94 206.71 117.56 86.83

1080P 168.96 48.10 179.98 54.33 51.51

5.1 Decoder performance

Figures 8, 9, 10, 11 show the decoder performance for 4 different video frame sizes.
The experimental results show that the decoder implemented with PWP + CRP out-
performs all other versions as discussed in Sect. 4.3. And all of the shared memory-
based implementations outperform the message-passing (MP) implementation. Ta-
ble 3 shows the maximum obtained FPS from the decoders.

CIF video decoding: Fig. 8 shows the performance of CIF video decoding. The
fastest one is the W + R implementation, which runs almost twice as fast as the slow-
est implementation, R + W. All implementations do not scale beyond 30 tiles when
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Fig. 8 Performance of CIF decoding

Fig. 9 Performance of 4CIF decoding

decoding CIF videos. The frame rates saturate at 31, 18, 27 and 23 tiles respectively
for R + R, R + W, W + R and W + W.

QCIF video decoding: Fig. 9 shows the performance of QCIF video decoding.
The fastest implementation is still W + R, which now runs 2.47 times faster than the
slowest one. The frame rates saturate at 46, 18, 35 and 21 tiles for R + R, R + W,
W + R and W + W, respectively.

720P video decoding: Fig. 10 shows the performance of 720P video decoding. The
W + R implementation runs 2.32 times faster than the R + W implementation. The
frame rates saturate at 45, 19, 39 and 25 tiles for R + R, R + W, W + R and W + W,
respectively.

1080P video decoding: Fig. 11 shows the performance of 1080P video decoding.
The W + R implementation runs 3.74 times faster than the R + W implementation.
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Fig. 10 Performance of 720P decoding

Fig. 11 Performance of 1080P decoding

The frame rates saturate at 56, 19, 55 and 19 tiles for R + R, R + W, W + R and
W + W, respectively.

From the above experimental results, it can be observed that the implementations
can be separated into two groups by their scalability when the given video frame size
is increased. Based on CRP, the R+R and W+R decoders have similar performance
behavior. On the other hand, the R + W and W + W decoders, which are based on
PWP, have similar performance behavior. When decoding the 1080P video, the two
implementations based on CRP result collection achieve 168.96 and 179.98 FPS de-
coding rates while the other two implementations based on PWP result collection
only achieve 48.10 and 54.33 FPS decoding rates. As for scalability, the two imple-
mentations based on CRP result collection keep scalable with the available number of
tiles but the two decoders based on PWP result collection cannot be scalable beyond
19 tiles when decoding the 1080P video.
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To further investigate the reasons behind decoder scalability issues, we looked into
program statistical data and have the following findings.

Smaller frame size videos: When the decoders are decoding videos of smaller
frame sizes such as CIF, the bottleneck that limits the scalability of R + R and W + R
implementations is the time spend by master process on I/O. That is, when the num-
ber of worker processes passes the saturation point, the worker processes consume
workloads at a rate faster than the master process prepares the workloads. Hence the
decoding frame rate will not increase with the number of tiles beyond the saturation
point. However, this is not the case for R + W and W + W implementations. The
bottleneck that limits the scalability of R + W and W + W implementations is the
time spent by worker processes filling the pool of completed tasks. Since the pool
of completed tasks is shared by the master process, when there is larger number of
workers trying to write results to the pool, the iMesh network becomes congested
towards the tile that runs the master process. This is the reason why implementations
based on PWP result collection scale poorly.

Larger frame size videos: When the decoders are decoding videos of larger frame
sizes, the saturation points of R + R and W + R implementations increase with frame
sizes. For the case of 1080P decoding, the frame rate of the implementations based
on CRP result collection scales almost linearly with the number of available tiles
throughout the experiment. On the other hand, performance of implementations based
on PWP result collection does not show improvement with different-sized workloads.
R + W and W + W implementations both do not scale well beyond 20 tiles no matter
what frame size the given video stream encompasses.

5.2 Encoder performance

Figures 12, 13, 14, 15 show the encoder performance for 4 different video frame sizes.
The experimental results show that the encoders implemented with PWP + CRP and
PWP+PWP exhibit very similar performance. Table 4 shows the maximum obtained
FPS from the encoders.

CIF video encoding: Fig. 12 shows the performance of CIF video encoding. The
fastest implementations are W + R and W + W, which have nearly similar perfor-
mance. The fastest implementation (W + R) runs 31.7 % faster than the slowest one
(R + R). The encoding frame rates saturate at 50 and 33 tiles for R + R and R + W,
respectively, and 34 tiles for both W + R and W + W.

QCIF video encoding: Fig. 13 shows the performance of QCIF video encoding.
The fastest implementation (W+W) runs 35.6 % faster than the slowest one (R+R).

Table 4 Encoder
performance—max frame rate Video size Programming paradigms

R + R R + W W + R W + W MP

CIF 782.05 819.24 1029.98 1019.09 603.27

4CIF 199.21 217.20 268.00 270.20 163.41

720P 90.18 92.34 117.60 119.18 70.47

1080P 41.83 45.74 54.72 54.79 33.65
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Fig. 12 Performance of CIF encoding

Fig. 13 Performance of 4CIF encoding

The frame rates saturate at 50 and 34 tiles for R + R and R + W, respectively, and 32
tiles for both W + R and W + W.

720P video encoding: Fig. 14 shows the performance of 720P video encoding. The
W + R implementation runs 2.32 times faster than the R + W implementation. The
frame rates saturate at 50 and 35 tiles for R + R and R + W, respectively, and 36 tiles
for both W + R and W + W.

1080P video encoding: Fig. 15 shows the performance of 1080P video encoding.
The W + R implementation runs 3.74 times faster than the R + W implementation.
The frame rates saturate at 52 and 37 tiles for R + R and R + W, respectively, and 35
tiles for both W + R and W + W.

From the performance results obtained from encoders, it can be observed that the
implementations can be separated into three types. The W + R and W + W encoders
perform very similarly and are the fastest implementations. The R+R encoder scales
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Fig. 14 Performance of 720P encoding

Fig. 15 Performance of 1080P encoding

almost linearly towards the maximum number of tiles. The R + W implementation
runs faster but saturates earlier than R + R implementation. The scalability of the
encoders is similar from small frame size to large frame size.

Experimental data show that the scalability bottleneck for W+R and W+W is the
time spent by the master process filling the pool of pending tasks, which is distributed
among all worker processes. The scalability bottleneck for R + R and R + W is the
time spent by worker processes draining the pool of pending tasks, which is shared
by the master process.

5.3 Summary

As shown in both decoder and encoder performance results, the scalability bottle-
neck for decoder applications is related to the shared access to the pool of completed
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results and the scalability bottleneck for encoder application is related to the shared
access to the pool of pending tasks. This is since the size of a completed task is far
larger than the size of a pending task in a decoder application. On the other hand,
in an encoder application, the size of a pending task is far larger than the size of a
completed task. Therefore it is important to carefully arrange the shared memory ac-
cess. The best implementation that suits both decoder and encoder is the PWP+CRP
combination.

For decoder implementations, the reason why the decoding CIF, 4CIF and 720P
videos does not scale beyond a certain point is the task granularity. When the number
of worker processes increases beyond a certain number, the bottleneck is at the mas-
ter process, since video frame sizes are not big enough for a worker process to spend
enough time decoding it. When there is one master and a few workers, the input rate
and output rate of the master process will be faster than decoding speed combined by
all the workers. As for 1080P decoding, the decoding speed is slow, and the size of
decoded frames is very large, so when using efficient implementations such as R + R
or W + R, the combined throughput made by the workers has not reached the I/O
limitation of the master, and these two implementations keep scaling throughout the
spectrum of number of workers. As for all 4 cases of encoder implementations, the
raw video is large and the input rate of master process is not high enough to supply
tasks for more than 36 worker processes to saturate their combined encoding capa-
bility. Figure 16 shows the speedup and efficiency chart of the decoders and Fig. 17
those of the encoders. Based on the experimental results, they make the discussion
more convincing and proving.

6 Conclusions and future work

New generations of multi-core and many-core processors bring higher perfor-
mance within the same or lower power envelope. This advantage comes tied
with the price of abstraction to application design and programming. Therefore,
this study explores the programming paradigm for master–worker stream process-
ing on the TILE64 many-core platform, in which a master–worker structure for
stream processing and two shared memory programming paradigms—consumer-
read programming and producer-write programming—are proposed. Experimen-
tal results show that a single programming paradigm does not guarantee good
performances for both encoder and decoder implementations. For instance, al-
though the PWP + PWP implementation performs best for the encoder, it only
runs at about 25 % of the performance of W + R when decoding a 1080P video
file. On the other hand, W + R performs quite well for both decoder and en-
coder in its hybrid implementation; we therefore conclude that the CRP suits
best the implementation of the result collection part in a master–worker Mo-
tion JPEG decoder/encoder while PWP performs best in the task distribution
part.

As further plans to the development of this research, we plan to evaluate CRP and
PWP with variable buffer sizes as experiments in this paper were conducted using
fixed-sized task pools and result pools. We believe that it will be interesting to discuss
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Fig. 16 Speedup and efficiency chart of the decoders

the correlation between memory usage and number of workers. Also we would like to
further explore this topic by applying CRP and PWP onto more complex paradigms
such as hierarchical master–worker structures. We would also like to explore the pos-
sibilities of applying CRP and PWP to wider areas of programming structures and
applications.
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Fig. 17 Speedup and efficiency charts of the encoders
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