
The Journal of Supercomputing, 17, 23–46, 2000
© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Efficient Methods for Multi-Dimensional
Array Redistribution
CHING-HSIEN HSU, YEH-CHING CHUNG, AND CHYI-REN DOW chhsu@fcu.edu.tw

ychung@fcu.edu.tw
crdow@fcu.edu.tw

Department of Information Engineering, Feng Chia University, Taichung, Taiwan 407, ROC

Final version accepted January 8, 1999

Abstract. In many scientific applications, array redistribution is usually required to enhance data local-
ity and reduce remote memory access on distributed memory multicomputers. Since the redistribution is
performed at run-time, there is a performance tradeoff between the efficiency of the new data decom-
position for a subsequent phase of an algorithm and the cost of redistributing data among processors.
In this paper, we present efficient methods for multi-dimensional array redistribution. Based on the
previous work, the basic-cycle calculation technique, we present a basic-block calculation (BBC) and a
complete-dimension calculation (CDC) techniques. We also developed a theoretical model to analyze
the computation costs of these two techniques. The theoretical model shows that the BBC method has
smaller indexing costs and performs well for the redistribution with small array size. The CDC method
has smaller packing/unpacking costs and performs well when array size is large. When implemented
these two techniques on an IBM SP2 parallel machine along with the PITFALLS method and the Prylli’s
method, the experimental results show that the BBC method has the smallest execution time of these
four algorithms when the array size is small. The CDC method has the smallest execution time of these
four algorithms when the array size is large.

Keywords: array redistribution, distributed memory multicomputers, the basic-block calculation
technique, the complete-dimension calculation technique

1. Introduction

The data parallel programming model has become a widely accepted paradigm
for programming distributed memory multicomputers. To efficiently execute a data
parallel program on a distributed memory multicomputer, an appropriate data
decomposition is critical. The data decomposition involves data distribution and data
alignment. The data distribution deals with how data arrays should be distributed.
The data alignment deals with how data arrays should be aligned with respect to
one another. The purpose of data decomposition is to balance the computational
load and minimize the communication overheads.

Many data parallel programming languages such as High Performance Fortran
(HPF) [9], Fortran D [6], Vienna Fortran [33], and High Performance C (HPC)
[28] provide compiler directives for programmers to specify array distribution. The
array distribution provided by those languages, in general, can be classified into
two categories, regular and irregular. The regular array distribution, in general, has
three types, BLOCK, CYCLIC, and BLOCK-CYCLIC�c�. The BLOCK-CYCLIC�c� is the
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most general regular array distribution among them. Dongarra et al. [5] have shown
that these distribution are essential for many dense matrix algorithms design in
distributed memory machines. The irregular array distribution uses user-defined
array distribution functions to specify array distribution.

In some algorithms, such as multi-dimensional fast Fourier transform, the Alter-
native Direction Implicit (ADI) method for solving two-dimensional diffusion equa-
tions, and linear algebra solvers, an array distribution that is well-suited for one
phase may not be good for a subsequent phase in terms of performance. Array
redistribution is required for those algorithms during run-time. Therefore, many
data parallel programming languages support run-time primitives for array redistri-
bution. Since array redistribution is performed at run-time, there is a performance
tradeoff between the efficiency of new data decomposition for a subsequent phase
of an algorithm and the cost of redistributing array among processors. Thus efficient
methods for performing array redistribution are of great importance.

In this paper, based on the basic-cycle calculation technique [4], we present a
basic-block calculation (BBC) and a complete-dimension calculation (CDC) tech-
nique for multi-dimensional array redistribution. The main idea of the basic-block
calculation technique is first to use the basic-cycle calculation technique to deter-
mine source/destination processors of some specific array elements in a basic-block.
From the source/destination processor/data sets of a basic-block, we can efficiently
perform a redistribution. The complete-dimension calculation technique also uses
the basic-cycle calculation technique to generate the communication sets of a redis-
tribution. However, it generates the communication sets for array elements in the
first row of each dimension of a local array. This will result in a high indexing over-
heads. But the packing/unpacking overheads can be greatly reduced. In this paper,
we also developed a theoretical model to analyze the tradeoff between these two
techniques. The two techniques can be easily implemented in a parallelizing com-
piler, run-time systems, or parallel programs.

This paper is organized as follows. In Section 2, a brief survey of related work will
be presented. In Section 3, we will introduce notations and terminology used in this
paper. Section 4 presents the basic-block calculation and the complete-dimension
calculation techniques for multi-dimensional array redistribution. The theoretical
model to analyze the performance tradeoff of these two methods will also be pre-
sented in this section. In Section 5, the experimental results of the basic-block cal-
culation technique, the complete-dimension calculation technique, the PITFALLS
method, and the Prylli’s method will be given.

2. Related work

Many methods for performing array redistribution have been presented in the lit-
erature. Since techniques of redistribution can be performed either by using the
multicomputer compiler technique [27] or using the runtime support technique, we
briefly describe the related research in these two approaches.

Gupta et al. [7] derived closed form expressions to efficiently determine the
send/receive processor/data sets. They also provided a virtual processor approach [8]
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for addressing the problem of reference index-set identification for array statements
with BLOCK-CYCLIC�c� distribution and formulated active processor sets as closed
forms. A recent work in [16] extended the virtual processor approach to address the
problem of memory allocation and index-sets identification. By using their method,
closed form expressions for index-sets of arrays that were mapped to processors
using one-level mapping can be translated to closed form expressions for index-sets
of arrays that were mapped to processors using two-level mapping and vice versa.
A similar approach that addressed the problems of the index set and the commu-
nication sets identification for array statements with BLOCK-CYCLIC�c� distribution
was presented in [24]. In [24], the CYCLIC�k� distribution was viewed as an union
of k CYCLIC distribution. Since the communication sets for CYCLIC distribution is
easy to determine, communication sets for CYCLIC�k� distribution can be generated
in terms of unions and intersections of some CYCLIC distributions.

In [3], Chatterjee et al. enumerated the local memory access sequence of com-
munication sets for array statements with BLOCK-CYCLIC�c� distribution based on
a finite-state machine. In this approach, the local memory access sequence can be
characterized by a FSM at most c states. In [17], Kennedy et al. also presented
algorithms to compute the local memory access sequence for array statements
with BLOCK-CYCLIC�c� distribution. Lee et al. [18] derived communication sets for
statements of arrays which were distributed in arbitrary BLOCK-CYCLIC�c� fashion.
They also presented closed form expressions of communication sets for restricted
block size.

Thakur et al. [25, 26] presented algorithms for run-time array redistribution in
HPF programs. For BLOCK-CYCLIC(kr) to BLOCK-CYCLIC�r� redistribution (or vice
versa), in most cases, a processor scanned its local array elements once to determine
the destination (source) processor for each block of array elements of size r in the
local array. In [10], an approach for generating communication sets by computing
the intersections of index sets corresponding to the LHS and RHS of array state-
ments was presented. The intersections are computed by a scanning approach that
exploits the repetitive pattern of the intersection of two index sets. In [22, 23],
Ramaswamy and Banerjee used a mathematical representation, PITFALLS, for
regular data redistribution. The basic idea of PITFALLS is to find all intersec-
tions between source and destination distributions. Based on the intersections, the
send/receive processor/data sets can be determined and general redistribution algo-
rithms can be devised. Prylli et al. [21] proposed runtime scan algorithm for BLOCK-
CYCLIC array redistribution. Their approach has the same time complexity as that
proposed in [23], but has simple basic operation compared to that proposed in [23].
The disadvantage of these approaches is that, when the number of processors is
large, iterations of the out-most loop in intersection algorithms increased as well.
This leads to high indexing overheads and degrades the performance of a redistri-
bution algorithm.

In [32], a spiral mapping technique was proposed. The main idea of this approach
was to map formal processors onto actual processors such that the global com-
munication can be translated to the local communication in a certain processor
group. Since the communication is local to a processor group, one can reduce
communication conflicts when performing a redistribution. Kalns and Ni [12, 13]
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proposed a processor mapping technique to minimize the amount of data exchange
for BLOCK to BLOCK-CYCLIC�c� redistribution and vice versa. Using the data to log-
ical processors mapping, they show that the technique can achieve the maximum
ratio between data retained locally and the total amount of data exchanged. Walker
et al. [30] used the standardized message passing interface, MPI, to express the
redistribution operations. They implemented the BLOCK-CYCLIC array redistribu-
tion algorithms in a synchronous and an asynchronous scheme. Since the exces-
sive synchronization overheads incurred from the synchronous scheme, they also
presented the random and optimal scheduling algorithms for BLOCK-CYCLIC array
redistribution.

Kaushik et al. [14, 15] proposed a multi-phase redistribution approach for BLOCK-
CYCLIC�s� to BLOCK-CYCLIC�t� redistribution. The main idea of multi-phase redis-
tribution is to perform a redistribution as a sequence of redistribution such that
the communication cost of data movement among processors in the sequence is
less than that of direct redistribution. Instead of redistributing the entry array at
one time, a strip mining approach was presented in [31]. In this approach, por-
tions of array elements were redistributed in sequence in order to overlap the
communication and computation. In [19], a generalized circulant matrix formal-
ism was proposed to reduce the communication overheads for BLOCK-CYCLIC�r�
to BLOCK-CYCLIC(kr) redistribution. Using the generalized circulant matrix formal-
ism, the authors derived direct, indirect, and hybrid communication schedules for
the cyclic redistribution with the block size changed by an integer factor k. They
also extended this technique to solve some multi-dimensional redistribution prob-
lem [20]. However, as the array size increased, the above methods will have a large
amount of extra transmission costs and degrades the performance of a redistribution
algorithm.

3. Preliminaries

In this section, we will present the notations and terminology used in this paper.
To simplify the presentation, we use BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1�
to represent the (CYCLIC�s0�; CYCLIC�s1�; : : : ; CYCLIC�sn−1�� to (CYCLIC�t0�,
CYCLIC�t1�; : : : ; CYCLIC�tn−1�� redistribution for the rest of the paper.

Definition 1. An n-dimensional array is defined as the set of array elements A�n� =
A�1:n0; 1:n1; : : : ; 1:nn−1� = �ad0; d1; :::; dn−1

�0 ≤ d` ≤ n` − 1; 0 ≤ ` ≤ n− 1�. The size
of array A�n�, denoted by �A�n��, is equal to n0 × n1 × · · · × nn−1. In this paper, we
assume that array elements are stored in a memory by a row-major manner.

Figure 1(a) shows a two-dimensional array A�2� = A�1x12; 1x12�. There are 12 ×
12 array elements in A�1x12; 1x12�, i.e., �A�2�� = 144. In Figure 1(a), we use the
italic fonts and the normal fonts to represent the indices of each dimension of array
A�1x12; 1x12� and the global array indices of array A�1x12; 1x12�, respectively. We
assume that array elements were stored in a row major fashion and the array index
starts from 1.
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Figure 1. (a) A global array A�12; 12�. (b) A BC�3; 2� → BC�2; 4� redistribution on A�1x12; 1x12� over
M�2; 3�. (c) Examples of SLA�n�i , SLA�n�i; ` , and SLA�n�i; `�r�.

Definition 2. An n-dimensional processor grid is defined as the set of processors
M�n� = M�m0;m1; : : : ;mn−1� = �p̃d0; d1;:::;dn−1

�0 ≤ d` ≤ m` − 1; 0 ≤ ` ≤ n − 1�.
The number of processors of M�n�, denoted by �M�n��, is equal to m0 ×m1 × · · ·
×mn−1.

Figure 1(b) shows a BC(3, 2) to BC(2, 4) redistribution on A�1x12; 1x12� over a
processor grid M�2; 3� with six processors. The shadow portions represent the array
elements distributed to processor P0 before and after the redistribution.
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Definition 3. Given an n-dimensional processor grid M�n�, the rank of proces-
sor p̃d0; d1; :::; dn−1

is equal to i = ∑n−1
k=0�dk ×

∏n−1
`=k+1m`�, where 0 ≤ d` ≤ m` − 1;

0 ≤ ` ≤ n − 1. To simplify the presentation, we also use processor Pi to denote
p̃d0; d1; :::; dn−1

in this paper, where 0 ≤ i ≤ �M�n�� − 1.

According to Definition 3, we know that p̃0; 0 = P0; p̃0; 1 = P1; p̃0; 2 = P2; p̃1; 0 =
P3; p̃1; 1 = P4; p̃1; 2 = P5.

Definition 4. Given an BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution,
BC�s0; s1; : : : ; sn−1�, BC�t0; t1; : : : ; tn−1�, s` and t` are called the source distribu-
tion, the destination distribution, the source distribution factors, and the destination
distribution factors of the redistribution, respectively, where 0 ≤ ` ≤ n− 1.

In Figure 1(b), the source distribution is BC�3; 2�. The destination distribution is
BC�2; 4�. The source distribution factors in the first and the second dimension are
equal to three and two, respectively. The destination distribution factors in the first
and the second dimension are equal to two and four respectively.

Definition 5. Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on
A�n� over M�n�, the source local array of processor Pi, denoted by SLA�n�i �1: �n0/m0�;
1: �n1/m1�; : : : ; 1: �nn−1/mn−1��, is defined as the set of array elements that are
distributed to processor Pi in the source distribution, i.e., �SLA�n�i � =

∏n−1
b=0�nb/mb�,

where 0 ≤ i ≤ �M�n�� − 1. The destination local array of processor Pj , denoted by
DLA

�n�
j �1: �n0/m0�; 1: �n1/m1�; : : : ; 1: �nn−1/mn−1��, is defined as the set of array

elements that are distributed to processor Pj in the destination distribution, i.e.,
�DLA�n�j � =

∏n−1
b=0�nb/mb�, where 0 ≤ j ≤ �M�n�� − 1.

Definition 6. We define SLA�n�i; ` as the set of array elements in the first row of
the `th dimension of SLA�n�i , i.e., SLA�n�i; ` = SLA�n�i �1; : : : ; 1; 1: �n`/m`�; 1; : : : ; 1�,
where 0 ≤ i ≤ �M�n�� − 1 and 0 ≤ ` ≤ n − 1. The number of array elements in
SLA

�n�
i; ` is equal to n`/m`. SLA

�n�
i; `�r� is defined as the rth array element of SLA�n�i; ` .

Figure 1(c) shows examples of notations that were defined in Definitions 5 and 6.
In Figure 1(c), there are 24 array elements in SLA�2�0 . The sets of array elements
in SLA�2�0; 0 and SLA�2�0; 1 are �1; 13; 25; 73; 85; 97� and �1; 2; 7; 8�, respectively. The
second and the fourth elements in SLA�2�0; 0 are SLA�2�0; 0�2� = �13� and SLA�2�0; 0�4� =
�73�, respectively. The second and the fourth elements in SLA�2�0; 1 are SLA�2�0; 1�2� =
�2� and SLA�2�0; 1�4� = �8�, respectively.

Definition 7. Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on
A�n� over M�n�, a basic-cycle of the `th dimension of SLA�n�i (or DLA�n�j �, denoted
by BC`, is defined as the quotient of the least common multiple of s` and t` to
the greatest common divisor of s` and t`, i.e., BC` = lcm�s`; t`�/gcd�s`; t`�. We
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define SLA�n�i; `�1:BC`� �DLA�n�j; `�1:BC`�� as the first basic-cycle of SLA�n�i; ` �DLA�n�j; `�
of processor Pi �Pj�; SLA�n�i; `�BC` + 1: 2 × BC`� �DLA�n�i; `�BC` + 1: 2 × BC`�� as the
second basic-cycle of SLA�n�i; ` �DLA�n�j; `� of processor Pi �Pj�, and so on, where 0 ≤
` ≤ n− 1.

In the BC�3; 2� to BC�2; 4� redistribution shown in Figure 1(b), in the first dimen-
sion, the source and the destination distribution factor are equal to three and
two, respectively. According to the above definition, the basic-cycle of the first
dimension is BC0 = lcm�3; 2�/gcd�3; 2� = 6. In the second dimension, the source
and the destination distribution factor are equal to two and four, respectively.
According to the above definition, the basic-cycle of the first dimension is BC1 =
lcm�2; 4�/gcd�2; 4� = 2.

Definition 8. Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on
A�n� over M�n�, a basic-block of SLA�n�i (or DLA�n�j � is defined as the multiplication
of the basic-cycles in each dimension. The size of a basic-block is equal to BC0 ×
BC1 × · · · × BCn−1.

In Figure 1(b), BC0 = 6 and BC1 = 2. According to Definition 8, the basic-block
is equal to BC0 × BC1 = 12.

4. Multi-dimensional array redistribution

To perform a BC�s0; s1; : : : ; sn−1� to BC�t0; t1; : : : ; tn−1� redistribution, in general, a
processor needs to compute the communication sets. Based on the characteristics
of a redistribution, we have the following lemmas.

Lemma 1. Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on A�n�

over M�n�, for a source (destination) processor Pi, if the rank of the destination (source)
processor of SLA�n�i; k�rk� �DLA�n�i; k�rk�� is p̃0; :::0; jk; 0;:::;0, where 0 ≤ i ≤ �M�n�� − 1; k =
0 to n − 1; 0 ≤ jk ≤ mk − 1, and 1 ≤ rk ≤ �nk/mk�, then the destination (source)
processor of SLA�n�i �r0; r1; : : : ; rn−1� �DLA�n�i �r0; r1; : : : ; rn−1�� is Pj = p̃j0; j1;:::;jn−1

,
where j =∑n−1

k=0�jk ×
∏n−1
`=k+1m`�.

Proof. We only prove the source processor part. The proof of the destination pro-
cessor part is similar. In a BC�s0; s1; : : : ; sn−1� →BC�t0; t1; : : : ; tn−1� redistribution,
we assume that the destination processor of SLA�n�i �r0��r1� : : : �rn−1�, is p̃d0; d1; :::; dn−1

,
where 0 ≤ d` ≤ m` − 1 and 0 ≤ ` ≤ n− 1. If the destination processor of SLA�n�i; 0�r0�
is p̃j0; 0; :::; 0, then d0 = j0, where 0 ≤ j0 ≤ m0− 1 and 1 ≤ r0 ≤ �n0/m0�. For the same
reason, if the destination processors of SLA�n�i; 1�r1�; SLA�n�i; 2�r2�; : : : ; SLA�n�i; n−1�rn−1�
are p̃0; j1; 0; :::; 0; p̃0; 0; j2; 0; :::; 0; : : :, and p̃0; :::; 0; jn−1

, respectively, we have d1 = j1; d2 =
j2; : : :, and dn−1 = jn−1. Therefore, according to Definition 3, if the rank of the des-
tination processor of SLA�n�i; k�rk� is p̃0; :::0; jk; 0; :::; 0; where 0 ≤ i ≤ �M�n�� − 1; k = 0
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to n− 1; 0 ≤ jk ≤ mk − 1, and 1 ≤ rk ≤ �nk/mk�, then the destination processor of
SLA

�n�
i �r0��r1� : : : �rn−1� is Pj = p̃j0; j1; :::; jn−1

, where j =∑n−1
k=0�jk ×

∏n−1
`=k+1m`�.

According to Lemma 1, the destination (source) processor of SLA�n�i �r0; r1; : : : ;
rn−1� �DLA�n�j �r0; r1; : : : ; rn−1�� can be determined by the ranks of the destination

(source) processors of SLA�n�i; 0�r0�; SLA�n�i; 1�r1�; : : :, and SLA�n�i; n−1�rn−1� �DLA�n�j; 0�r0�,
DLA

�n�
j; 1�r1�; : : :, and DLA

�n�
j; n−1�rn−1��. Therefore, how to efficiently determine

the communication sets of these array elements is important. In this section,
we present two efficient techniques, the basic-block calculation technique and
the complete-dimension calculation technique, to deal with this problem. Both
techniques are based on the basic-cycle calculation technique proposed in [4].
The main idea of the basic-cycle calculation technique is based on the following
lemma.

Lemma 2. Given a BC�s� → BC�t� and a BC�s/gcd�s; t�� → BC�t/gcd�s; t�� redistri-
bution on a one-dimensional array A�1:N� over M processors, for a source (destina-
tion) processor Pi �Pj�, if the destination (source) processor of SLAi�k� �DLAj�k��
in BC�s/gcd�s; t�� → BC�t/gcd�s; t�� redistribution is Pj �Pi�, then the destination
(source) processors of SLAi��k− 1� × gcd�s; t� + 1:k× gcd�s; t�� �DLAj��k− 1� ×
gcd�s; t� + 1:k× gcd�s; t��� in BC�s� →BC�t� redistribution will also be Pj �Pi�, where
1 ≤ k ≤ �N/�M × gcd�s; t���.

Proof. We only prove the source processor part. The proof of the destination
processor part is similar. For a source processor Pi, if the global array index of
SLAi�k� in BC�s/gcd�s; t�� → BC�t/gcd�s; t�� redistribution is α, then the global
array indices of SLAi��k− 1� × gcd�s; t� + 1:k× gcd�s; t�� in BC�s� → BC�t� redis-
tribution are �α − 1� × gcd�s; t� + 1; �α − 1� × gcd�s; t� + 2; : : : ; α × gcd�s; t�. If
A�1:N� is distributed by BC�t/gcd�s; t�� distribution, then A�α� is in the �α ×
gcd�s; t�/t�th block of size t/gcd�s; t�. If A�1:N� is distributed by BC�t� distribution,
then A��α− 1� × gcd�s; t� + 1�;A��α− 1� × gcd�s; t� + 2�; : : :, and A�α× gcd�s; t��
are in the ��α− 1�× gcd�s; t�+ 1/t�th, the ��α− 1�× gcd�s; t�+ 2/t�th; : : :, and the
��α× gcd�s; t�/t�th block of size t, respectively. Since ��α− 1� × gcd�s; t� + 1/t� =
��α − 1� × gcd�s; t� + 2/t� = : : : = �α × gcd�s; t�/t�, if the destination processor
of A�α� is Pj in BC�s/gcd�s; t�� → BC�t/gcd�s; t�� redistribution, then the destina-
tion processors of A��α − 1� × gcd�s; t� + 1�;A��α − 1� × gcd�s; t� + 2�; : : :, and
A�α × gcd�s; t�� are Pj in BC�s� → BC�t� redistribution. Therefore, if the destina-
tion processor of SLAi�k� in BC�s/gcd�s; t�� → BC�t/gcd�s; t�� redistribution is Pj ,
then the destination processors of SLAi��k − 1� × gcd�s; t� + 1:k × gcd�s; t�� in
BC�s� → BC�t� redistribution will also be Pj , where 0 ≤ i; j ≤ M − 1 and 1 ≤ k ≤
�N/�M × gcd�s; t���.

Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution, according
to Lemmas 1, and 2, we know that the communication sets of BC�s0/gcd�s0;
t0�; s1/gcd�s1; t1�; : : : ; sn−1/gcd�sn−1; tn−1�� → BC�t0/gcd�s0; t0�; t1/gcd�s1; t1�; : : : ;
tn−1/gcd�sn−1; tn−1�� redistribution can be used to generate the communication
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sets of BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution. Therefore, in the
following discussion, for a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution,
we assume that gcd�si; ti� is equal to 1, where 1 ≤ i ≤ n − 1. If gcd�si; ti� is not
equal to 1, we use si/gcd�si; ti� and ti/gcd�si; ti� as the source and destination
distribution factors of the redistribution, respectively.

4.1. The basic-block calculation technique

Given a BC�s0; s1� → BC�t0; t1� redistribution on a two-dimensional array A�1:n0,
1:n1� over M�m0;m1�, to perform the redistribution, we have to first construct the
communication sets. According to Lemma 1, a source processor Pi only needs to
determine the destination processor sets for the two basic cycles, SLA�2�i; 0�1:BC0�
and SLA

�2�
i; 1�1:BC1�. Then it can generate the destination processor sets for the

basic block, SLA�2�i �1:BC0; 1:BC1�. For example, if the destination processors of
SLA

�2�
i; 0�r0� and SLA�2�i; 1�r1� are p̃j0; 0 and p̃0; j1 , respectively, the destination processor

Pj of SLA�2�i �r0��r1� can be determined by the following equation,

Rank�Pj� = j0m1 + j1; (1)

where rank�Pj� is the rank of destination processor Pj .
For a source processor Pi, if Pi = p̃i0; i1 , according to Definition 3, we have i0 =
�i/m1� and i1 = mod�i; m1� where 0 ≤ i0 ≤ m0 − 1 and 0 ≤ i1 ≤ m1 − 1. Since
the values of i0 and i1 are known, the destination processors of SLA�2�i; 0�1:BC0� and
SLA

�2�
i; 1�1:BC1� can be determined by the following equation,

DP�`� = Destination Processors�SLA�2�i; `�1:BC`�� =


F�1�
F�2�
:::

F�BC`�


BC`×1

(2)

where ` = 0 and 1. The function F�x� is defined as follows,

F�x� =
mod

((
i` +m` ×

⌊
x
s`

⌋)
× s`;m` × t`

)
t`

 ; (3)

where x = 1 to BC`; i` is the rank of source processor Pi in the `th dimension,
` = 0; 1.

For a two-dimensional array redistribution, from Equation 2, we can obtain
DP�0� and DP�1� that represent the destination processors of SLA�2�i; 0�1:BC0� and
SLA

�2�
i; 1�1:BC1�, respectively. According to DP�0�;DP�1� and Equation 1, a source

processor Pi can determine the destination processor of array elements in the
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Figure 2. A BC�3; 1� → BC�2; 4� redistribution on A�1: 24; 1: 24� over M�2; 3�.

first basic-block of SLA�2�i , i.e., SLA�2�i �1:BC0; 1:BC1�. Figure 2 shows an exam-
ple of a BC�3; 1� → BC�2; 4� redistribution on A�1: 24; 1: 24� over M�2; 3�. In this
example, BC0 = 6 and BC1 = 4. For source processor P0 �= p̃0; 0�, according to
Equation 2, the destination processors of SLA�2�0; 0�1:BC0� and SLA�2�0; 1�1:BC1� are
DP�0� = �0; 0; 1; 1; 1; 0� and DP�1� = �0; 0; 1; 2�, respectively. Based on DP�0�;DP�1�,
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and Equation 1, the destination processors of SLA�2�0 �1: 6; 1: 4� are
0 0 1 2
0 0 1 2
3 3 4 5
3 3 4 5
3 3 4 5
0 0 1 2


6×4

:

For a multi-dimensional array redistribution, each basic-block of a local array has
the same communication patterns. The following lemmas state this characteristic.

Lemma 3. Given a BC�s� → BC�t� redistribution on a one-dimensional array A�1:N�
over M processors, SLAi�m�, SLAi�m+ lcm�s; t��, SLAi�m+ 2× lcm�s; t��; : : :, and
SLAi�m+ ��N/lcm�s; t� ×M� − 1� × lcm�s; t�� have the same destination processor,
where 0 ≤ i ≤M − 1 and 1 ≤ m ≤ lcm�s; t�.

Proof. The proof of this lemma can be found in [11].

Lemma 4. Given a BC�s0; s1� → BC�t0; t1� redistribution on a two-dimensional array
A�1:n0; 1:n1� over M�m0;m1�, SLA�2�i �x; y�, SLA�2�i �x+k0×BC0; y�, SLA�2�i �x; y +
k1 ×BC1�, SLA�2�i �x+ k0 ×BC0; y + k1 ×BC1� have the same destination processor,
where 0 ≤ i ≤ m0 × m1 − 1; 1 ≤ x ≤ lcm�s0; t0�; 1 ≤ y ≤ lcm�s1; t1�; 1 ≤ k0 ≤
�n0/�lcm�s0; t0� ×m0�� and 1 ≤ k1 ≤ �n1/�lcm�s1; t1� ×m1��.

Proof. The proof of this lemma can be easily established according to Lemma 3.

Since each basic-block has the same communication patterns, we can pack local
array elements to messages according to the destination processors of array ele-
ments in SLA

�2�
i �1:BC0; 1:BC1�. However, if the value of BC0 × BC1 is large, it

may take a lot of time to compute the destination processors of array elements in a
basic-block by using Equation 1. In the basic-block calculation technique, instead of
using the destination processors of array elements in the first basic-block, it uses a
table lookup method to pack array elements. Given a BC�s0; s1� → BC�t0; t1� redistri-
bution on a two-dimensional array A�1:n0; 1:n1� over M�m0;m1�, since the destina-
tion processors of SLA�2�i �1:BC0; 1:BC1� can be determined by DP�0� and DP�1�, if
we gather the indices of array elements, that have the same destination processor, in
SLA

�2�
i; l �1:BC`� to tables, called Send Tables, we can also determine the destination

processors of SLA�2�i �1:BC0; 1:BC1� from Send Tables. For example, considering
the BC�3; 1� → BC�2; 4� redistribution shown in Figure 2. For the source proces-
sor P0, since DP�0�= [0, 0, 1, 1, 1, 0], SLA�2�0; 0�1�, SLA�2�0; 0[2] and SLA

�2�
0; 0�6� have

the same destination processor p̃0; 0. SLA�2�0; 0 [3], SLA2
0; 0 [4] and SLA�2�0; 0 [5] have

the same destination processor p̃1; 0. Therefore, the indices of array elements in
SLA

�2�
0; 0�1: 6� can be classified into two sets as shown in Figure 3(a). Since DP�1�=
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Figure 3. The Send Tables for SLA�2�0; 0�1:BC0� and SLA�2�0; 1�1:BC1�.

[0, 0, 1, 2], SLA�2�0; 1[1] and SLA
�2�
0; 1[2] have the same destination processor p̃0; 0.

The destination processors of SLA�2�0; 1[3] and SLA�2�0; 1[4] are p̃0; 1 and p̃0; 2, respec-
tively. Therefore, the indices of array elements in SLA�2�0; 1�1: 4� can be classified into
three sets as shown in Figure 3(b).

Based on the Send Tables, we can pack array elements in a source local array
to messages, considering the message that processor P0 will send to the destination
processor P4 in the example shown in Figure 2. Since the destination processor P4 =
p̃1; 1, according to Figure 3 and Lemma 1, the destination processor of SLA�2�0 �3��3�,
SLA

�2�
0 �4��3� and SLA�2�0 �5��3� is P4. According to Lemma 4, each basic-block has

the same communication patterns. Processor P0 will also send SLA
�2�
0 �3��3 + 4�,

SLA
�2�
0 �4��3+ 4�, and SLA�2�0 �5��3+ 4� in the second basic-block, SLA�2�0 �3+ 6��3�,

SLA
�2�
0 �4 + 6��3�, and SLA

�2�
0 �5 + 6��3� in the third basic-block, and SLA

�2�
0 �3 +

6��3 + 4�, SLA�2�0 �4 + 6��3 + 4�, and SLA�2�0 �5 + 6��3 + 4� in the fourth basic-block
to the destination processor P4. Note that array elements are packed in a row-major
manner for the techniques presented in this paper.

In the receive phase, according to Lemma 1, a destination processor Pj only needs
to determine the source processor sets for the two basic-cycles, DLA�2�j; 0�1:BC0�
and DLA

�2�
j; 0�1:BC1�. Then it can generate the source processor sets for the

basic-block, DLA�2�j �1:BC0; 1:BC1�. For example, if the source processors of
DLA

�2�
j; 0�r0� and DLA�2�j; 1�r1� are p̃i0; 0 and p̃0; i1 , respectively, the source processor

Pi of DLA�2�j �r0��r1� can be determined by the following equation,

Rank�Pi� = i0m1 + i1; (4)

where rank�Pi� is the rank of source processor Pi.
For a destination processor Pj , if Pj = p̃j0; j1 , according to Definition 3, we have

j0 = �j/m1� and j1 = j modm1, where 0 ≤ j0 ≤ m0 − 1 and 0 ≤ j1 ≤ m1 − 1. Since
the value of j0 and j1 are known, the source processors of DLA�2�j; 0�1:BC0� and

DLA
�2�
j; 1�1:BC1� can be determined by the following equation,

SP�`� = Source Processors
(
DLA

�2�
j; `�1:BC`�

)
=


G�1�
G�2�
:::

G�BC`�


BC`×1

(5)
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where ` = 0; 1. The function G�x� is defined as follows,

G�x� =
mod

((
j` +m` ×

⌊
x
t`

⌋)
× t`;m` × s`

)
s`

 (6)

where x = 1 to BC`; j` is the rank of destination processor Pj in the `th dimension,
` = 0; 1.

For a two-dimensional array redistribution, from Equation 5, we can obtain
SP�0� and SP�1� that represent the source processors of DLA

�2�
j; 0�1:BC0� and

DLA
�2�
j; 1�1:BC1�, respectively. According to SP�0� and SP�1�, we can also construct

the Receive Tables for the destination processor Pj as we construct the Send Tables
in the send phase. Based on the Receive Tables, we can unpack array elements from
the received messages to their appropriate destination local array positions. The
algorithm of the basic-block calculation technique is given as follows.

Algorithm Basic Block Calculation�s0; : : : ; sn−1; t0; : : : ; tn−1; n0; : : : ; nn−1,
m0; : : : ;mn−1�

1. Construct Send Tables (STs);
2. For �j = myrank; z = 0y z < �M�y j++; z++�
3. j = mod�j; �M��;
4. Pack the message for destination processor Pj to out buffer

according to the STs;
5. If (out buffer != NULL)
6. Send out buffer to destination processor Pj;
7. Construct Receive Tables (RTs);
8. x = the number of messages to be received;
9. For �z = 0y z < xy z++�

10. Receive data sets in buffer from any source processor;
11. Unpack the received messages according to the RTs;

end of Basic Block Calculation

4.2. The complete-dimension calculation technique

In Section 4.1, we stated that each basic-block has the same communication pat-
terns. Therefore, a processor only needs to construct the Send Tables and the
Receive Tables for the first basic-cycle in each dimension of its local array. Then it
can perform a multi-dimensional array redistribution. In this section, we will present
a complete-dimension calculation (CDC) technique. In the complete-dimension cal-
culation technique, a processor constructs the Send Tables and the Receive Tables
not only for array elements that are in the first basic-cycle of each dimension of
its local array, but also for array elements in the first row of each dimension of
its local array, i.e., SLA�n�i; `�1:n`�, where ` = 0 to n − 1. In the following, we will
describe the complete-dimension calculation technique in details.
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Assume that a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on an
n-dimensional array A�n� = A�1:n0; 1:n1; : : : ; 1:nn−1� over M�n� = M�m0;m1; : : : ;
mn−1� is given. For the complete-dimension calculation technique, in the send
phase, a source processor Pi computes the destination processors for array ele-
ments in SLA

�n�
i; 0�1:L0�, SLA�n�i; 1�1:L1�; : : :, SLA�n�i; n−1�1:Ln−1�, where Lk is the

local array size in each dimension, i.e., Lk = �nk/mk�; k = 0 to n − 1. The des-
tination processors of SLA�n�i; 0�1:L0�, SLA�n�i; 1�1:L1�; : : :, SLA�n�i; n−1�1:Ln−1� can be
determined by the following equation:

DP�`� = Destination Processors�SLA�n�i; `�1:L`�� =


F�1�
F�2�
:::

F�L`�


L`×1

(7)

where ` = 0 to n− 1. The function F�x� is defined in Equation 3.
For a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution, from Equation

7, we can obtain DP�0�;DP�1�; : : : ;DP�n−1� that represent destination proces-
sors of SLA�n�i; 0�1:L0�; SLA�n�i; 1�1:L1�; : : : ; SLA�n�i; n−1�1:Ln−1�, respectively. Since the
destination processors of SLA�n�i; 0�1:L0�; SLA�n�i; 1�1:L1�; : : : ; SLA�n�i; n−1�1:Ln−1� are
known, we can construct the Send Tables for SLA

�n�
i; 0�1:L0�; SLA�n�i; 1�1:L1�; : : : ;

SLA
�n�
i; n−1�1:Ln−1�. For example, consider the redistribution shown in Figure 2. The

Send Tables constructed by the source processor P0 are shown in Figure 4. Based
on the Send Tables, one can pack array elements in source local arrays to messages.

In the receive phase, a destination processor Pj computes the source processors
for array elements in DLA�n�j; 0�1:L0�;DLA�n�j; 1�1:L1�; : : : ;DLA�n�j; n−1�1:Ln−1�, where
Lk is the local array size in each dimension, i.e., Lk = �nk/mk�; k = 0 to n − 1.
The source processors of DLA�n�j; 0�1:L0�;DLA�n�j; 1�1:L1�; : : : ;DLA�n�j; n−1�1:Ln−1� can
be determined by the following equation,

SP�`� = Source Processors�DLA�n�j; `�1:L`�� =


G�1�
G�2�
:::

G�L`�


L`×1

(8)

where ` = 1 to n− 1. The function G�x� is defined in Equation 6.
For a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution, from Equation

8, we can obtain SP�0�; SP�1�; : : : ; SP�n−1� that represent the source processors

Figure 4. The Send Tables for SLA�2�0; 0�1:L0� and SLA�2�0; 1�1:L1�.
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of SLA
�n�
i; 0�1:L0�; SLA�n�i; 1�1:L1�; : : : ; SLA�n�i; n−1�1:Ln−1�, respectively. Since the

source processors of DLA
�n�
j; 0�1:L0�;DLA�n�j; 1�1:L1�; : : : ;DLA�n�j; n−1�1:Ln−1� are

known, we can construct the Receive Tables for DLA�n�j; 0�1:L0�;DLA�n�j; 1�1:L1�; : : : ;
DLA

�n�
j; n−1�1:Ln−1�: Based on the Receive Tables, we can unpack array elements in

the received messages to their appropriate local array positions.

4.3. Performance comparisons of BBC and CDC

The complete-dimension calculation technique has higher indexing cost than that of
the basic-block calculation technique because it constructs larger Send Tables and
Receive Tables. However, the complete-dimension calculation technique provides
more packing/unpacking information than the basic-block calculation technique. It
may have lower packing/unpacking costs. Therefore, there is a performance tradeoff
between the indexing and packing/unpacking overheads of these two techniques. In
this section, we derive a theoretical model to analyze the tradeoff between these
two methods.

Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on an n-
dimensional array A�n� over M�n�, the computational cost for an algorithm to
perform the redistribution, in general, can be modeled as follows:

Tcomp = Tindexing + T�un�packing (9)

where Tindexing is the time for an algorithm to compute the source/destination pro-
cessors of local array elements. T�un�packing is the time to pack/unpack array ele-
ments. We said that Tindexing and T�un�packing is the indexing and packing/unpacking
time of an algorithm to perform a redistribution, respectively. In the following dis-
cussion, since the sending phase and the receiving phase have the same time com-
plexity, we only construct a model for the send phase. We will first construct a
model for two-dimensional array redistribution, then, extend the model to multi-
dimensional array redistribution.

Given a BC�s0; s1� → BC�t0; t1� redistribution on a two-dimensional array
A�1:n0; 1:n1� over M�m0;m1�, the indexing time of the basic-block calculation and
the complete-dimension calculation can be modeled as follows,

Tindexing�BBC� = O�BC0� +O�BC1� (10)

Tindexing�CDC� = O�L0� +O�L1� (11)

where BCk is the size of basic-cycle in each dimension; Lk is the local array size in
each dimension, Lk = �nk/mk�; k = 0; 1.

In the basic-block calculation technique, the Send Tables only store the indices of
local array elements in the first basic-cycle. A processor needs to calculate the stride
distance when it packs local array elements that are in the rest of basic-cycles into
messages. Assume that array elements were packed in a row-major manner. The
time for a processor to pack array elements to messages in each row is O�L1/BC1�,
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where L1/BC1 is the number of basic-cycles in dimension 1. Since there are L0 rows
in a local array, the time for a processor to pack array elements in dimension 1 to
messages is O��L0 × L1�/BC1�. Since a processor packs local array elements to
messages in a row-major manner, the time for a processor to pack array elements
in dimension 0 to messages is O�L0/BC0�. Therefore, the time for a processor to
pack array elements to messages can be modeled as follows,

T�un�packing�BBC� = O
(
L0 × L1

BC1

)
+O

(
L0

BC0

)
(12)

In the complete-dimension calculation technique, the Send Tables store the
indices of local array elements in SLA

�n�
i; 0�1:L0� and SLA

�n�
i; 1�1:L1�. According to

the Send Tables, a processor can pack local array elements into messages directly.
It does not need to calculate the stride distance when it packs array elements that
are not in the first basic-cycle.

According to Equations 9 to 12, the computation time of the complete-dimension
calculation is less than that of the basic-block calculation technique if and only if
the following equation is true.

Tcomp�CDC� < Tcomp�BBC� ⇔ O�L0 + L1�

< O

(
BC0 + BC1 +

L0 × L1

BC1
+ L0

BC0

)
(13)

By truncating BC0; BC1 and L0/BC0 from Tcomp�BBC�, we obtain the following
equation:

Tcomp�CDC� < Tcomp�BBC� ⇔ O�L0 + L1� < O
(
L0 × L1

BC1

)
(14)

Given a BC�s0; s1; : : : ; sn−1� → BC�t0; t1; : : : ; tn−1� redistribution on an n-
dimensional array A�n� = A�1:n0; 1:n1; : : : ; 1:nn−1� over M�n� = M�m0;m1; : : : ;
mn−1�, according to Equation 14, the computation time of the complete-dimension
calculation is less than that of the basic-block calculation technique if and only if
the following equation is true.

Tcomp�CDC� < Tcomp�BBC� ⇔ O�L0 + L1 + · · · + Ln−1�

< O

(
Ln−1

BCn−1
× Ln−2 × · · · × L0

)
(15)

From Equation 15, we can evaluate the tradeoff between the indexing and the pack-
ing/unpacking overheads. The performance of the basic-block calculation and the
complete-dimension calculation techniques can be also predicted by Equation 15.
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5. Performance evaluation and experimental results

To evaluate the performance of the basic-block calculation and the complete-
dimension calculation techniques, we have implemented these two techniques
along with the PITFALLS method [23] and the Prylli’s method [21] on an IBM
SP2 parallel machine. All algorithms were written in the single program multiple
data (SPMD) programming paradigm with C+MPI codes. To get the experimental
results, we used different redistribution as test samples. For these redistribution
samples, we roughly classify them into three types.

• Dimension shift redistribution:

Ex: BC�x; y� to BC�y; x� of two-dimensional arrays, and BC�x; y; z� to BC�y; z; x�
of three-dimensional arrays, where x; y and z are positive integers.

• Refinement redistribution:

Ex: BC�x; y� to BC�x/p; y/q� of two-dimensional arrays, and BC�x; y; z� to
BC�x/p; y/q; z/r� of three-dimensional arrays, where p; q and r are factors of
x; y and z, respectively.

• Block-cyclic redistribution:

Ex: (BLOCK, BLOCK) to (CYCLIC, CYCLIC) of two-dimensional arrays, and
(BLOCK, BLOCK, BLOCK) to (CYCLIC, CYCLIC, CYCLIC) of three-dimensional
arrays.

Table 1 shows the execution time of these four algorithms to perform a BC�5; 8�
to BC�8; 5� (i.e., dimension shift) redistribution with fixed array size on different
numbers of processors. From Table 1, we can see that the indexing time of the
basic-block calculation technique is independent of the number of processors. The
indexing time of the Prylli’s method and the PITFALLS method depends on the
number of processors. When the number of processors increases, the indexing time
of the Prylli’s method and the PITFALLS method increases as well. The indexing
time of the complete-dimension calculation technique decreases when the number
of processors increases. The reason is that when the array size is fixed and the num-
ber of processors is increased, the number of array elements that will be processed
by the complete-dimension calculation technique decreases.

For the same test sample, the complete-dimension calculation technique has
smaller packing/unpacking time than that of other methods. The reason is that
the complete-dimension calculation technique provides more packing/unpacking
information than other methods. This packing/unpacking information allows the
complete-dimension calculation technique to pack/unpack array elements directly.
Other methods need to spend time to calculation stride distance of array ele-
ments when packing/unpacking array elements. The packing/unpacking time of the
basic-block calculation technique, the PITFALLS method and the Prylli’s method
are similar.
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All of these four methods use asynchronous communication schemes. There-
fore, the computation and the communication overheads can be overlapped. How-
ever, the basic-block calculation and the complete-dimension calculation techniques
unpack any received messages in the receiving phase while the PITFALLS and the
Prylli’s methods unpack messages in a specific order. Therefore, in general, we can
expect that the communication time of the basic-block calculation and the complete-
dimension calculation techniques is less than or equal to that of the PITFALLS and
the Prylli’s methods.

From Table 1, we can see that the complete-dimension calculation technique
has the smallest execution time when the number of processors is less than or
equal to 24 �8×3�. The basic-block calculation technique has the smallest execution
time when the number of processors is greater than or equal to 32 �8×4�. These
phenomena match the theoretical analysis given in Equation 15. We also observe
that the execution time of the basic-block calculation technique is smaller than that
of the PITFALLS and the Prylli’s methods for all test samples.

Table 2 shows the performance of these four algorithms to execute a BC�10; 20� to
BC�5; 10� (i.e., Refinement) redistribution with fixed array size on different numbers
of processors. From Table 2, we have similar observations as those described for
Table 1.

Table 3 shows the execution time of these four algorithms to perform a
(BLOCK, BLOCK) to (CYCLIC, CYCLIC) redistribution. In this case, the Send Tables
and Receive Tables constructed by the basic-block calculation technique and the
complete-dimension calculation technique are the same. Therefore, they have
almost the same execution time. The execution time of both methods for this
redistribution is less than that of the PITFALLS method and the Prylli’s method.

Table 4 shows the performance of these four algorithms to execute these three
redistribution with various array size on a processor grid M[8, 7]. From Table 4,
for the BC�5; 8� to BC�8; 5� and BC�10; 20� to BC�5; 10� redistribution, we can see
that the execution time of the complete-dimension calculation technique is less than
that of the basic-block calculation technique for all test samples. The reason can
be explained by Equation 15. Moreover, the execution time of both methods is less
than that of the PITFALLS method and the Prylli’s method for all test samples.

For the (BLOCK, BLOCK) to (CYCLIC, CYCLIC) redistribution, the execution
time of these four algorithms has the order Texec�CDC� ≈ Texec�BBC� �
Texec�Prylli’s� < Texec�PITFALLS�. In this case, the PITFALLS method and
the Prylli’s method have very large execution time compared to that of the BBC
method and the CDC method. The reason is that each processor needs to find out
all intersections between source and destination distribution with all other pro-
cessors in the PITFALLS and the Prylli’s methods. The computation time of the
PITFALLS and the Prylli’s methods depends on the number of intersections. In this
case, there are N0/m0 +N1/m1 intersections between each source and destination
processor. Therefore, a processor needs to compute �N0/m0�×m0+�N1/m1�×m1
intersections which demands a lot of computation time when N0 and N1 are large.

Table 5 shows the performance of these four algorithms to execute different
redistribution on three-dimensional arrays. Each redistribution with various array



42 hsu, chung and dow

Ta
bl

e
2.

T
he

tim
e

(m
s)

of
fo

ur
al

go
ri

th
m

s
to

ex
ec

ut
e

a
B

C
(1

0,
20

)
to

B
C

(5
,1

0)
re

di
st

ri
bu

tio
n

on
di

ff
er

en
t

nu
m

be
r

of
pr

oc
es

so
rs

w
ith

fix
ed

ar
ra

y
si

ze
�N

0;
N

1�
=
�4

00
;

64
0�

P
ry

lli
’s

P
IT

FA
L

L
S

B
B

C
C

D
C

Pr
oc

es
so

r
Pa

ck
in

g/
Pa

ck
in

g/
Pa

ck
in

g/
Pa

ck
in

g/
gr

id
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l

8×
2

1.
41

4
24

.1
40

69
.1

43
2.

13
8

26
.0

89
71

.1
19

1.
12

6
23

.1
37

66
.1

49
3.

12
8

20
.1

00
64

.1
12

8×
3

2.
14

2
17

.2
33

58
.2

65
3.

25
2

18
.1

62
60

.2
07

1.
16

5
16

.2
29

54
.2

90
2.

54
5

14
.1

78
53

.2
10

8×
4

2.
24

1
12

.5
83

49
.5

85
4.

14
8

12
.3

45
49

.4
38

1.
14

1
11

.2
63

44
.5

84
2.

45
3

10
.3

50
47

.4
26

8×
5

2.
40

9
11

.1
36

40
.1

91
4.

52
3

10
.5

56
43

.1
00

1.
17

8
8.

13
1

37
.9

32
2.

12
0

8.
55

3
41

.1
05

8×
6

3.
12

5
8.

14
8

30
.4

65
5.

12
2

8.
14

0
34

.1
33

1.
16

2
6.

55
1

27
.0

79
1.

71
0

6.
30

5
30

.4
05

8×
7

4.
22

0
6.

30
2

21
.8

68
5.

50
8

6.
21

6
23

.3
17

1.
15

6
5.

00
4

17
.1

56
1.

41
3

4.
86

8
20

.7
33

Ta
bl

e
3.

T
he

tim
e

(m
s)

of
fo

ur
al

go
ri

th
m

s
to

ex
ec

ut
e

a
(B
L
O
C
K
,
B
L
O
C
K

)
to

(C
Y
C
L
I
C
,
C
Y
C
L
I
C

)
re

di
st

ri
bu

tio
n

on
di

ff
er

en
t

nu
m

be
r

of
pr

oc
es

so
rs

w
ith

fix
ed

ar
ra

y
si

ze
�N

0;
N

1�
=
�4

00
;

64
0�

P
ry

lli
’s

P
IT

FA
L

L
S

B
B

C
C

D
C

Pr
oc

es
so

r
Pa

ck
in

g/
Pa

ck
in

g/
Pa

ck
in

g/
Pa

ck
in

g/
gr

id
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l
In

de
xi

ng
un

pa
ck

in
g

To
ta

l

8×
2

5.
09

3
26

.1
05

74
.8

02
6.

11
2

26
.8

60
76

.7
58

3.
24

2
19

.4
79

63
.5

30
3.

67
3

19
.5

16
63

.5
72

8×
3

5.
12

1
19

.1
13

62
.1

19
6.

12
6

19
.9

07
63

.7
66

3.
17

0
13

.5
11

52
.6

43
3.

13
2

13
.5

93
52

.5
57

8×
4

5.
14

9
13

.1
38

53
.1

71
6.

13
4

13
.1

05
52

.1
15

2.
11

4
9.

63
6

43
.8

57
2.

17
4

9.
62

1
43

.1
21

8×
5

5.
23

1
11

.3
10

44
.2

48
6.

30
1

11
.1

52
46

.2
08

2.
18

4
7.

25
0

35
.1

90
2.

27
2

7.
16

6
35

.2
01

8×
6

5.
36

3
8.

55
1

33
.3

48
6.

51
5

8.
23

7
36

.3
99

1.
39

6
5.

48
2

25
.4

16
1.

51
0

5.
33

6
25

.3
28

8×
7

5.
90

3
7.

10
8

24
.9

43
6.

60
3

7.
68

5
25

.7
29

1.
80

4
3.

98
4

16
.8

94
1.

93
4

3.
96

2
16

.6
44



efficient methods 43

Table 4. The time (ms) of different algorithms to execute different redistribution on a two-dimensional
array with various array size on a 56-node SP2, �N0;N1� = �1200; 1600�

Prylli’s PITFALLS BBC CDC

Array size BC�5; 8� to BC�8; 5�
�N0;N1� 28.367 35.202 27.771 26.763
�2N0; 2N1� 144.630 150.013 130.002 123.407
�3N0; 3N1� 321.218 335.736 317.212 297.565
�4N0; 4N1� 511.111 534.277 503.035 489.143

BC�10; 20� to BC�5; 10�
�N0;N1� 27.326 33.454 27.277 25.968
�2N0; 2N1� 144.408 168.581 134.247 120.319
�3N0; 3N1� 327.077 342.153 305.005 291.011
�4N0; 4N1� 518.172 539.914 508.474 484.268

(BLOCK, BLOCK) to (CYCLIC, CYCLIC)

�N0;N1� 29.545 32.238 24.565 24.192
�2N0; 2N1� 150.153 153.357 135.406 135.497
�3N0; 3N1� 451.118 491.118 402.924 402.799
�4N0; 4N1� 931.347 1045.838 566.802 565.324

Table 5. The time (ms) of different algorithms to execute different redistribution on a three-dimensional
array with various array size on a 56-node SP2, �N0;N1;N2� = �120; 180; 160�

Prylli’s PITFALLS BBC CDC

Array size BC�5; 10; 20� to BC�10; 20; 5�
�N0;N1;N2� 50.961 52.100 45.476 44.423
�2N0; 2N1; 2N2� 236.156 240.086 229.271 225.303
�3N0; 3N1; 3N2� 409.062 427.057 361.258 343.309
�4N0; 4N1; 4N2� 910.413 973.718 869.111 807.249

BC�10; 20; 30� to BC�1; 2; 3�
�N0;N1;N2� 51.319 51.292 49.134 43.952
�2N0; 2N1; 2N2� 244.283 255.721 238.697 227.676
�3N0; 3N1; 3N2� 445.187 469.731 410.987 368.073
�4N0; 4N1; 4N2� 812.320 873.900 750.708 631.445

(BLOCK, BLOCK, BLOCK) to (CYCLIC, CYCLIC, CYCLIC)

�N0;N1;N2� 61.545 77.990 37.964 37.414
�2N0; 2N1; 2N2� 363.723 383.345 250.983 249.725
�3N0; 3N1; 3N2� 552.444 623.724 326.750 326.750
�4N0; 4N1; 4N2� 1411.378 1493.714 918.662 918.226
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size on a processor grid M[2,4,7] with 56 processors were tested. From Table 5, we
have similar observations as those described for Table 4.

6. Conclusions and future work

In many scientific applications, array redistribution is usually required to enhance
data locality and reduce remote memory access on distributed memory multicom-
puters. Since the redistribution is performed at run-time, there is a performance
tradeoff between the efficiency of the new data decomposition for a subsequent
phase of an algorithm and the cost of redistributing data among processors. In this
paper, we have presented efficient algorithms for performing multi-dimensional
array redistribution. Based on the basic-cycle calculation technique, we presented
a basic-block calculation technique and a complete-dimension calculation tech-
nique. In these two methods, the Send Tables and the Receive Tables are used to
store the packing/unpacking information of a redistribution. From the information
of Send Tables and Receive Tables, we can efficiently perform a BC�s0; s1; : : : ; sn−1�
to BC�t0; t1; : : : ; tn−1� redistribution of multidimensional arrays. The theoreti-
cal model shows that the BBC method has smaller indexing costs and performs
well for the redistribution with small array size. The CDC method has smaller
packing/unpacking costs and performs well when the array size is large. The exper-
imental results also show that our algorithms can provide better performance than
the PITFALLS method and the Prylli’s method.

Our techniques can only handle dense arrays and In-core programs. There are
some possible extensions could be made. One of the issues would be to consider out-
of-core external array redistribution. Another important future research direction
would be to investigate the redistribution techniques in irregular scientific compu-
tation programs. it would also be interesting to consider the array redistribution of
sparse arrays.
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