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Abstract—In our previous work, we have proposed the extended Karnaugh map

representation (EKMR) scheme for multidimensional array representation. In this

paper, we propose two data compression schemes, EKMR Compressed Row/

Column Storage (ECRS/ECCS), for multidimensional sparse arrays based on the

EKMR scheme. To evaluate the proposed schemes, we compare them to the

CRS/CCS schemes. Both theoretical analysis and experimental tests were

conducted. In the theoretical analysis, we analyze the CRS/CCS and the ECRS/

ECCS schemes in terms of the time complexity, the space complexity, and the

range of their usability for practical applications. In experimental tests, we

compare the compressing time of sparse arrays and the execution time of matrix-

matrix addition and matrix-matrix multiplication based on the CRS/CCS and the

ECRS/ECCS schemes. The theoretical analysis and experimental results show

that the ECRS/ECCS schemes are superior to the CRS/CCS schemes for all the

evaluated criteria, except the space complexity in some cases.

Index Terms—Data compression scheme, sparse array operation,

multidimensional sparse array, Karnaugh map, sparse ratio.
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1 INTRODUCTION

ARRAY operations are useful in a large number of important
scientific codes, such as molecular dynamics [4], finite-element
methods [7], climate modeling [12], etc. For sparse array opera-
tions, in general, sparse arrays are compressed by some data
compression schemes in order to obtain better performance. The
Compressed Row Storage (CRS) [2] and the Compressed Column
Storage (CCS) [2] (or Compressed Sparse Column/Row [14]) are
common used schemes [3], [5], [8], [11], [13], [15], [16] due to their
simplicity and purity with a weak dependence relationship
between array elements in a sparse array.

A multidimensional array can be viewed as a collection of two-

dimensional arrays. This scheme is called traditional matrix

representation (TMR) [10]. The CRS/CCS schemes are both based

on the TMR scheme. For the CRS/CCS schemes, a two-dimensional

sparse array can be compressed into three one-dimensional arrays.

However, for higher dimensional sparse arrays, sparse array

operations based on CRS/CCS schemes usually do not perform

well. The reasons are two-fold. First, the number of one-

dimensional arrays used to compress sparse arrays increases as

the dimension increases because more one-dimensional arrays are

needed to store extra indices of nonzero array elements. This

increases the time and the memory space of compressing a sparse

array. Second, the costs of indirect data access [1] and index

comparisons for sparse array operations increase as the dimension

increases.

In our previous work [10], we have proposed the extended

Karnaugh map representation (EKMR) scheme for multidimensional
array representation and have shown that dense array operations
based on the EKMR scheme have better performance than those
based on theTMR scheme. In this paper, we propose the EKMR

Compressed Row/Column Storage (ECRS/ECCS) data compression
schemes for multidimensional sparse arrays based on the EKMR

scheme. Given a k-dimensional sparse array with a size of m along
each dimension, the EKMR(k) can be represented by
mk�4EKMRð4Þ. For k = 3 or 4, the ECRS/ECCS schemes use three
one-dimensional arrays to compress the sparse array. For k > 4,
the ECRS/ECCS schemes first use three one-dimensional arrays to
compress mk�4EKMRð4Þ sparse arrays individually. Then, an
abstract pointer array with a size of mk�4 is used to link these three
arrays in each EKMRð4Þ.

To evaluate the proposed schemes, we compare them to the
CRS/CCS schemes. Both theoretical analysis and experimental
tests were conducted. In the theoretical analysis, we analyze the
CRS/CCS and the ECRS/ECCS schemes in terms of the time
complexity, the space complexity, and the range of their usability
for practical applications. The theoretical analysis shows that the
time complexities of the ECRS/ECCS schemes are less than those
of the CRS/CCS schemes. For most of sparse arrays in practical
applications, the space complexities of the ECRS/ECCS schemes
are less than those of the CRS/CCS schemes. The range of usability
of the ECRS/ECCS schemes is wider than that of the CRS/CCS
schemes for practical applications. In experimental tests, we
compare the compressing time of sparse arrays and the execution
time of matrix-matrix addition and matrix-matrix multiplication based
on the CRS/CCS and the ECRS/ECCS schemes. The experimental
results show that the compressing time of the ECRS/ECCS
schemes is less than that of the CRS/CCS schemes and sparse
array operations based on the ECRS/ECCS schemes outperform
those based on the CRS/CCS schemes. The reasons are two-fold.
First, for the CRS/CCS schemes, the number of one-dimensional
arrays used to compress sparse arrays increases as the dimension
increases, while the ECRS/ECCS schemes do not. The compressing
time required by the ECRS/ECCS schemes is less than that by the
CRS/CCS schemes. Second, the costs of the indirect data access
and index comparisons for sparse array operations based on the
ECRS/ECCS schemes are less than those based on the CRS/CCS
schemes.

This paper is organized as follows: In Section 2, we will briefly
describe theEKMR scheme. Section 3 will describe the ECRS/ECCS
schemes in detail. The theoretical analysis of the CRS/CCS and the
ECRS/ECCS schemes will be given in this section as well. The
experimental results will be given in Section 4.

2 THE EKMR SCHEME

In this section, we briefly describe the EKMR scheme before
presenting the ECRS/ECCS schemes. The details of the EKMR

scheme can be found in [10]. In the following, we use TMR(n) and
EKMR(n) for the TMR and the EKMR schemes of an n-dimensional
array based on the row-major data layout, respectively.

The idea of the EKMR scheme is based on the Karnaugh map.
When n = 1 and 2, the TMR and the EKMR schemes are the same.
Let A½k�½i�½j� denote a 3� 4� 5 array based on the TMR(3). The
corresponding EKMR(3) of array A is shown in Fig. 1. The
EKMR(3) is represented by a 4� 15 two-dimensional array. In the
EKMR(3), we use the index variable i0 to indicate the row direction
and the index variable j0 to indicate the column direction. Note that
the index i0 is the same as the index i, whereas the index j0 is a
combination of indices j and k. The way to obtain the EKMR(4) is
similar to that of the EKMR(3). The EKMR(4) is also represented by
a two-dimensional array. In the EKMR(4), the index i0 is a
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combination of indices l and i, whereas the index j0 is a
combination of indices j and k. Based on the EKMR(4), we can
generalize our results to n-dimensional arrays. The EKMR(n) can
be represented by mn�4EKMRð4Þ and a one-dimensional array X

with a size of mn�4 are used to link these EKMR(4). Fig. 2 shows a
3� 2� 2� 3� 4� 5 six-dimensional array represented by six
EKMR(4) with a size of 8� 15.

3 THE ECRS/ECCS SCHEMES

We first describe the CRS/CCS schemes for sparse arrays based on
the TMR scheme. Then, we present the ECRS/ECCS schemes for
sparse arrays based on the EKMR scheme.

3.1 The CRS/CCS Schemes

Given a two-dimensional sparse array, the CRS (CCS) scheme
using one one-dimensional floating-point array VL and two one-
dimensional integer arrays RO and CO to compress all of the
nonzero array elements along the rows (columns for CCS) of the
sparse array. Array RO stores information about the nonzero array
elements of each row (column for CCS). The number of nonzero
array elements in the ith row (jth column for CCS) can be obtained
by subtracting the value of RO½i� from RO½iþ 1�. Array CO stores
the column (row for CCS) indices of nonzero array elements of
each row (column for CCS). Array VL stores the values of nonzero
array elements. The base of these three arrays is 0. An example of
the CRS/CCS schemes for a two-dimensional sparse array is given
in Fig. 3. Fig. 3a shows a 3� 4 two-dimensional sparse array.
Fig. 3b and Fig. 3c show the CRS/CCS schemes, respectively. In
Fig. 3b, the number of nonzero array elements in the second row
can be obtained by ROCRS ½3� �ROCRS ½2� ¼ 7� 5 ¼ 2. The column
indices of nonzero array elements of the second row are stored in
COCRS ½ROCRS ½2� � 1�; . . . ; COCRS ½ROCRS ½3� � 2�. The values of
nonzero array elements of the second row are stored in
V LCRS ½4 : 5�. Based on the CRS/CCS schemes above, a sparse
array based on the TMR(3) can be compressed by adding one one-

dimensional integer array KO. In the CRS (CCS) scheme, array KO

stores the third dimension indices of nonzero array elements of
each row (column for CCS). An example of the CRS/CCS schemes
for a sparse array based on the TMR(3) is shown in Fig. 4. For four
or higher dimensional sparse arrays based on the TMR scheme,
more one-dimensional integer arrays are needed.

3.2 The ECRS/ECCS Schemes

The ECRS/ECCS schemes use one one-dimensional floating-point
array V and two one-dimensional integer arrays R and CK to
compress a multidimensional sparse array based on the EKMR

scheme. Given a sparse array based on the EKMR(3), the ECRS

(ECCS) scheme compresses all of nonzero array elements along the
rows (columns for ECCS) of the sparse array. Array R stores
information of nonzero array elements of each row (column for
ECCS). The number of nonzero array elements in the ith row (jth
column for ECCS) can be obtained by subtracting the value of R½i�
from R½iþ 1�. Array CK stores the column (row for ECCS) indices
of nonzero array elements of each row (column for ECCS). Array V

stores the values of nonzero array elements. The base of these three
arrays is 0. An example of the ECRS/ECCS schemes for a sparse
array based on the EKMR(3) is given in Fig. 5. Fig. 5a shows a 3� 8

sparse array based on the EKMR(3) whose TMR(3) is shown in
Fig. 4a. Fig. 5b and Fig. 5c show the ECRS/ECCS schemes,
respectively.

Similarly, we can use arrays R, CK, and V to compress a sparse
array based on the EKMR(4) in the ECRS/ECCS schemes. Since
EKMR(k) can be represented by mk�4EKMRð4Þ, in the ECRS/
ECCS schemes, each EKMR(4) is first compressed by using arrays
R, CK, and V. Then, an abstract pointer array with a size of mk�4 is
used to link arrays R, CK, and V in each EKMR(4). For example,
assume that there is a 3� 2� 2��4� 5 sparse array A based on
the TMR(6). The sparse array A0 based on the EKMR(6) can be
represented by six EKMR(4) with a size of 8� 15. In the ECRS/
ECCS schemes, we first compress each EKMR(4) to arrays R, CK,
and V. Then, we use an abstract pointer array with a size of 6 to
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Fig. 1. The EKMR(3) scheme.

Fig. 2. An example of the EKMR(6).

Fig. 3. The CRS/CCS schemes for a two-dimensional sparse array based on the TMR(2). (a) A sparse array. (b) The CRS scheme. (c) The CCS scheme.



link arrays R, CK, and V of each EKMR(4). An example is shown in
Fig. 6.

3.3 Theoretical Analysis

Assume that an n3 sparse array A based on the TMR(3) with sparse
ratio S is given. The number of nonzero array elements of sparse
array A is Sn3. We assume that the sparse probability [6] for each
array element is equal. In the CRS/CCS schemes, four arrays, RO,
CO, KO, and VL, are used to compress sparse array A. For the CRS

(CCS) scheme, it first needs to scan the entire array A along the
rows (columns for CCS) to find all of nonzero array elements. The
cost of scanning entire array A is n3. Then, it needs to record the
information of each nonzero array element to these four arrays.
The cost of recording the information to those four arrays is

4Sn3.Therefore, the time complexities of the CRS/CCS schemes

both are n3 þ 4Sn3.
Let sparse array A0 be the corresponding sparse array A based

on the EKMR(3). In the ECRS/ECCS schemes, three arrays, R, CK,

and V, are used to compress sparse array A0. Therefore, the time

complexities of the ECRS/ECCS schemes both are n3 þ 3Sn3. For

four or higher dimensional sparse arrays, we can obtain the time

complexities of the CRS/CCS and the ECRS/ECCS schemes in a

similar manner. Table 1 lists the time complexities of the CRS/CCS

and the ECRS/ECCS schemes. In Table 1, the improved rate of

compressing time (IRC) is defined as

IRCð%Þ ¼ ððTCRS=CCS � TECRS=ECCSÞ=TCRS=CCSÞ � 100;
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Fig. 4. The CRS/CCS schemes for a three-dimensional sparse array based on the TMR(3). (a) A sparse array based on the TMR(3). (b) The CRS scheme. (c) The CCS

scheme.

Fig. 5. The ECRS/ECCS schemes for a three-dimensional sparse array based on the EKMR(3). (a) A sparse array based on the EKMR(3). (b) The ECRS scheme. (c)

The ECCS scheme.

Fig. 6. The ECRS scheme for a six-dimensional sparse array based on the EKMR(6).



where TCRS=CCS and TECRS=ECCS are the compressing time of
sparse arrays based on the CRS/CCS and the ECRS/ECCS
schemes, respectively.

In the CRS/CCS schemes, for sparse array A, the size of array
RO is nþ 1, the size of arrays CO, KO, and VL is all Sn3. Assume
that an integer is � bytes long and a floating-point is � bytes long.
The space complexities of the CRS/CCS schemes both are
ð2Sn3 þ nþ 1Þ�þ Sn3�. In the ECRS/ECCS schemes for sparse
array A0, the size of array R is nþ 1 and n2 þ 1, respectively. The
size of arrays CK and V both are Sn3. Therefore, the space
complexities of the ECRS/ECCS schemes are ðSn3 þ nþ 1Þ�þ
Sn3� and ðSn3 þ n2 þ 1Þ�þ Sn3�, respectively. Table 2 lists the
space complexities of the CRS/CCS and the ECRS/ECCS schemes.
In Table 2, if SCRS=CCS > SECRS=ECCS is satisfied, the space
complexities of the ECRS/ECCS schemes are less than those of
the CRS/CCS schemes, where SCRS=CCS and SECRS=ECCS are the
memory space required by the CRS/CCS and the ECRS/ECCS
schemes, respectively. The improved rate of space (IRS) is defined
as IRSð%Þ ¼ ððSCRS=CCS � SECRS=ECCSÞ=SCRS=CCSÞ � 100. In gen-
eral, the conditions shown in Table 2 can be satisfied easily since
the size of most of sparse arrays in practical applications is large.

One of the goals to use the data compression scheme is to
reduce the memory space required for sparse array operations.
From Table 2, we can derive the range of usability of the CRS/CCS
and the ECRS/ECCS schemes according to the sparse ratio S. The
results are shown in Table 3. In Table 3, we can see that the range
of usability of the ECRS/ECCS schemes is wider than that of the
CRS/CCS schemes. The ECRS/ECCS schemes are more suitable
for practical applications with a higher sparse ratio S than the
CRS/CCS schemes.

4 EXPERIMENTAL RESULTS

In this section, we compare the compressing time of sparse arrays
and the execution time of matrix-matrix addition and matrix-matrix

multiplication based on the CRS/CCS and the ECRS/ECCS

schemes. Due to the page limitation, we only use three-

dimensional sparse arrays as test samples. All programs were
implemented in C and were executed on an IBM RS/6000

workstation.

4.1 The Compressing Time of the CRS/CCS and the
ECRS/ECCSSchemes

Assume that sparse array A½k�½i�½j� based on the TMR(3) is given. If

we compress sparse array A by using the CRS (CCS) scheme, we
first compress all of the nonzero array elements along the i index

(j index for CCS) of the sparse array. Then, we compress the

nonzero array elements along the k index or j index (k index or i

index for CCS) of the sparse array. Therefore, there are two ways,

IJK and IKJ (JIK and IKJ for CCS), to compress sparse array A in the
CRS (CCS) scheme. However, there is only one way in the ECRS/

ECCS schemes. Table 4 shows the compressing time of the CRS and
the ECRS schemes. In Table 4, we also list the IRS and the IRC for

the ECRS scheme. From Table 4, for the IRS, we have two

observations. First, the memory space required by the ECRS

scheme is less than that by the CRS scheme since the condition

S > 0 shown in Table 2 is satisfied. On an IBM RS/6000
workstation, an integer and a floating-point both are 4-byte long.

The IRS can be calculated according to Table 2. Second, the IRS of
sparse array 10� 10� 10with sparse ratio 0.001 is far less than that

of others. The reason is that the number of nonzero array elements

is too small (only 1). Therefore, the value of SCRS � SECRS is small.
In Table 4, for the IRC, we also have two observations. First, the

compressing time of the ECRS scheme is less than that of the CRS

scheme. The reason is that the number of one-dimensional arrays

used in the ECRS scheme is less than that used in the CRS scheme.
Second, the IRC shown in Table 4 are larger than those shown in

Table 1. For example, for sparse array 10� 10� 10 with sparse
ratio 0.1, the IRC shown in Table 1 and Table 4 is 7.142 percent and

19.206 percent, respectively. The reason is that the cost of scanning
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TABLE 1
Time Complexities for the CRS/CCS and the ECRS/ECCS Schemes

TABLE 2
Space Complexities for the CRS/CCS and the ECRS/ECCS Schemes

TABLE 3
The Range of Usability of the CRS/CCS and the ECRS/ECCS Schemes



entire sparse array by the ECRS scheme is less than that by the CRS
scheme, that is, the cost of scanning entire sparse array is machine-
dependent [10]. However, in Table 1, we assume that the cost of
scanning the entire sparse array by the CRS/CCS and the ECRS/
ECCS schemes is the same in order to simplify the analysis.

Table 5 shows the compressing time in the CCS and the ECCS
schemes. In Table 5, we also list the IRS and the IRC for the ECCS
scheme. From Table 5, for the IRS, we can see that the memory
space required by the ECCS scheme is not always less than that by
the CCS scheme. The reason is that the condition S > 1=n shown in
Table 2 is not always satisfied. For example, for sparse array 200�
200� 200 with sparse ratio 0.001, the condition S > 0:005 is not
satisfied. In Table 5, for the IRC, we have similar observations as
those of Table 4.

From Table 4 and Table 5, we first can see that the compressing
time of the ECCS (CCS) scheme is larger than that of the ECRS
(CRS) scheme. The reason is that the cost of scanning entire sparse
array by the ECCS (CCS) scheme is larger than that by the ECRS
(CRS) scheme since all programs were implemented in the row-

major data layout. Second, for some sparse arrays, the IRC of the
ECCS scheme is much larger than that of the ECRS scheme. For
example, for sparse array 100� 100� 100 with sparse ratio 0.1, the
IRC of the ECCS/ECRS schemes is 18.240 percent and 54.457 per-
cent, respectively. The reason is that the costs of scanning entire
sparse array for the CCS and the ECCS schemes have greater effect
on overall compressing time than those of the CRS and the ECRS

schemes.

4.2 The Execution Time of Sparse Array Operations
Based on the CRS/CCS and the ECRS/ECCS Schemes

Tables 6 and 7 show the execution time of matrix-matrix addition

based on the CRS/CCS and the ECRS/ECCS schemes by compres-
sing one and two sparse arrays, respectively. For the case where
one sparse array is compressed, we use the indices of array
elements in the compressed sparse array to find the corresponding
array elements in the noncompressed sparse array before
performing addition operations. For the case where two sparse
arrays are compressed, we need to check if the indices of array
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TABLE 4
The Compressing Time of the CRS and the ECRS Schemes

TABLE 5
The Compressing Time of the CCS and the ECCS Schemes

TABLE 6
The Execution Time of Matrix-Matrix Addition by Compressing One Sparse Array



elements of a compressed sparse array are the same as those in

another compressed sparse array before performing addition

operations.
From Tables 6 and 7, we can see that the execution time of

matrix-matrix addition based on the ECRS/ECCS schemes is less

than that based on the CRS/CCS schemes. For Table 6, the reason is

that the cost of indirect data access in the ECRS/ECCS schemes is

less than that in the CRS/CCS schemes. For Table 7, the reason is

that the cost of index comparisons in the ECRS/ECCS schemes is

less than that in the CRS/CCS schemes.
Table 8 shows the execution time of matrix-matrix multiplication

based on the CRS/CCS and the ECRS/ECCS schemes by

compressing one sparse array. From Table 8, for the execution

time of matrix-matrix multiplication, we have similar observations as

those of Table 6.

5 CONCLUSIONS

In this paper, we have presented the ECRS/ECCS data compres-

sion schemes for multidimensional sparse arrays based on the

EKMR scheme. From the theoretical analysis and experimental

results, we have the following conclusions:

1. The time complexity for compressing a multidimensional
sparse array based on the ECRS/ECCS schemes is less than
that based on the CRS/CCS schemes.

2. For most of the sparse arrays in practical applications, the
space complexity of compressing a multidimensional
sparse array based on the ECRS/ECCS schemes is less
than that based on the CRS/CCS schemes.

3. The range of usability of the ECRS/ECCS schemes is
wider than that of the CRS/CCS schemes for practical
applications.

4. The performance of sparse array operations based on the
ECRS/ECCS schemes is better than that based on the CRS/
CCS schemes.
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