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Abstract. Multi-dimensional sparse array operations can be used in the atmosphere and ocean sciences, the image
processing, and etc., and have been an extensively investigated problem. Therefore, it becomes an important issue
to propose efficient data distribution schemes for multi-dimensional sparse arrays. In our previous work, we have
proposed two data distribution schemes Compress Followed Send (CFS) and Encoding-Decoding (ED) for sparse
arrays based on the traditional matrix representation (TMR) scheme. We have proposed another scheme, called
extended Karnaugh map representation (EKMR), to represent sparse arrays. The EKMR scheme can obtain better
performance than the TMR scheme for some sparse array operations. Hence, in this paper, we want to propose
efficient data distribution schemes for EKMR-based sparse arrays. We extend the CFS and the ED schemes for
TMR-based sparse arrays to EKMR-based sparse arrays first. Then, we compare the performance of these two
schemes with that of the Send Followed Compress (SFC), which is an intuitive data distribution scheme for sparse
arrays. Finally, we compare these three schemes for EKMR-based sparse arrays with those of TMR-based sparse
arrays, respectively. Both the theoretical analysis and the experimental tests were conducted. From the theoretical
analysis and the experimental results, we can see that the ED scheme is superior to the CFS scheme that is superior
to the SFC scheme for most of testing EKMR-based sparse arrays; the performance of these three schemes for
EKMR-based sparse arrays is better than that of TMR-based sparse arrays for all of testing cases, respectively.
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1. Introduction

Array operations are useful in a large number of important scientific codes, such as the
molecular dynamics, [8], the finite-element methods [14], the climate modeling [28], the
atmosphere and ocean sciences [9], and etc. To do parallel array operations is an efficient and
widely accepted method; however, the utilization of the available computational power in
distributed memory multicomputers involves a tremendous programming effort on a part of
users. Many data parallel programming languages, such as High Performance Fortran (HPF)

∗Parts of this work have previously published by the seventh International Symposium on Parallel Architectures,
Algorithms, and Networks.
†Corresponding author.



292 LIN, CHUNG AND LIU

[15], Fortran D [12], and Vienna Fortran [29], have been proposed to help programmers
to write efficient data parallel programs by providing compiler directives or libraries to
specify array distribution. However, it is a challenging problem to provide efficient data
distributions for irregular problems [27].

Multi-dimensional array (dense or sparse) operations can be used in the atmosphere and
ocean sciences, the image processing [24], and etc. They have been an extensively inves-
tigated problem [5, 6, 9, 16, 19, 21, 22, 29]. Therefore, it becomes an important issue to
propose efficient data distribution schemes for multi-dimensional sparse arrays. In the liter-
ature, some methods have been proposed to implement data distributions for sparse arrays
[2, 6, 28, 29, 31]. These methods all belonged to an intuitive scheme, called Send Followed
Compress (SFC), for sparse arrays based on the traditional matrix representation (TMR)
scheme [19]. The SFC scheme is composed of three phases and performed in the following
order, the data partition phase, the data distribution phase, and the data compression phase.
In the data partition phase, a global sparse array in a host processor is partitioned into local
sparse arrays and then these local sparse arrays are distributed to processors in the data
distribution phase. In the data compression phase, each local sparse array in a processor is
compressed by using a data compression method in order to obtain better performance for
sparse array operations [10, 17, 18, 25, 31].

In our previous work [20], we have proposed two data distribution schemes Compress
Followed Send (CFS) and Encoding-Decoding (ED) for TMR-based sparse arrays. The CFS
scheme is anther possible intuitive method and similar to the SFC scheme except that the
data compression phase is performed before the data distribution phase. The ED scheme is a
novel concept in which the data compression phase can be divided into two steps: encoding
and decoding. In the ED scheme, the data partition phase is performed first, then the encoding
step, followed by the data distribution phase and the decoding step. In [20], we have shown
that the SFC scheme was less efficient than the CFS and the ED schemes for TMR-based
sparse arrays. In order to represent multi-dimensional arrays, we have proposed another
representation scheme, called extended Karnaugh map representation (EKMR) [19, 21].
We have proposed the corresponding data compression methods, called EKMR-Compressed
Row/Column Storage (ECRS/ECCS) [22], for EKMR-based sparse arrays. We have shown
that the performance of some sparse array operations, such as All, Maxval, Pack, and Merge
Fortran 90 array intrinsic functions [1], for EKMR-based sparse arrays is better than that of
TMR-based sparse arrays.

Hence, in this paper, we want to propose efficient data distribution schemes for EKMR-
based sparse arrays. We extend the CFS and the ED schemes for TMR-based sparse arrays to
EKMR-based sparse arrays first. Then, we compare the performance of these two schemes
with that of the SFC scheme for EKMR-based sparse arrays. Finally, we compare the perfor-
mance of these three schemes for EKMR-based sparse arrays with that of TMR-based sparse
arrays, respectively. In order to evaluate these three schemes, in the data partition phase, the
row partition, the column partition, and the 2D mesh partition with/without load-balancing
methods are used. For three- or higher dimensional arrays, these three partition methods
are similar to (∗, . . . , Block, ∗), (∗, . . . , *, Block), and (∗, . . . , Block, Block), respectively
[21]. The details of the load-balancing method can be found in [29]. In the data distribu-
tion phase, local sparse arrays are sent to processors in sequence in order to simplify the
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comparisons. In the data compression phase, the CRS/CCS [3, 11] methods for TMR-based
sparse arrays and the ECRS/ECCS methods for EKMR-based sparse arrays are used for
these three schemes.

Both the theoretical analysis and the experimental tests were conducted. In the theoretical
analysis, we analyze these three schemes in terms of the data distribution time and the data
compression time. Here, we do not consider the data partition time since the comparisons
of these three schemes are all based on the same partition method. In the experimental tests,
we implement these three schemes for TMR- and EKMR-based sparse arrays on an IBM
SP2 parallel machine. From the theoretical analysis and the experimental results, for most
of testing EKMR- based sparse arrays, we can see that the ED scheme outperforms the CFS
scheme that outperforms the SFC scheme. We also can see that the performance of these
three schemes for EKMR-based sparse arrays is better than that of TMR-based sparse arrays
for all of testing cases, respectively.

This paper is organized as follows. In Section 2, a brief survey of related work will
be presented. We will briefly describe the EKMR scheme and the ECRS/ECCS meth-
ods in Section 3. Section 4 will describe the SFC, the CFS, and the ED schemes for
EKMR-based sparse arrays in detail. Section 5 will analyze the time required of these three
schemes for TMR- and EKMR-based sparse arrays. The experimental results will be given in
Section 6.

2. Related work

Some methods have been proposed to implement data distributions for sparse arrays in
the literature. Zapata et al. [2, 29] have proposed two data distribution schemes, called
Block Row Scatter (BRS) and Multiple Recursive Decomposition (MRD). The BRS scheme
is based on the division of any computation domain into several blocks, all of the same
spatial shape and size. The MRD scheme can be considered as a generalization of the
Binary Recursive Decomposition [4], a well-known data distribution scheme. Based on
the recursive decomposition concept, Vastenhouw and Bisseling [30] also proposed anther
data distribution method that is similar to the MRD scheme to distribute data in the two-
dimensional sparse matrix-vector multiplication. For the BRS and the MRD schemes, in the
data partition phase, they used the Block and the Cyclic(k) partition methods, respectively.
In the data compressing phase, for these two schemes, they used the CRS/CCS methods.
Based on these two schemes, they solved some important problems of sparse arrays [2, 13,
28, 29].

Ziantz et al. [32] proposed a run-time optimization technique that was applied to sparse
arrays for array distributions and off-processor data fetching to reduce the communication
and the computation time. In their technique, they used the Block partition method with a bin-
packing algorithm to distribute a global sparse array to processors. Then, local sparse arrays
in processors are compressed by using the CRS/CCS methods. Lee et al. [5, 6] presented
an efficient library for sparse array computations with Fortran 90 array intrinsic functions.
Their approach has the potential to speed up sparse array computations on sequential and
distributed memory environments. Since Fortran 90 provides a rich set of array intrinsic
functions for multi- dimensional array operations, they provide a data compression method
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that is similar to the CRS/CCS methods and a data distribution scheme that is similar to the
MRD scheme.

These proposed data distribution methods above all belonged to the SFC scheme for
TMR- based sparse arrays with the two or higher dimensions.

3. Preliminary concepts

In this section, we briefly describe the EKMR scheme and the ECRS/ECCS methods. The
details of them can be found in [19–22]. We use the TMR(n) and the EKMR(n) for TMR- and
EKMR-based arrays with the dimension n, respectively. Here, the SFC, the CFS, and the ED
schemes for TMR- and EKMR-based sparse arrays are all based on the row-major data layout
[7]. However, with some indexing changes, they are also suitable for the column-major data
layout [7].

3.1. The EKMR scheme

The EKMR scheme is used to represent a dense or sparse multi-dimensional array by a set
of two-dimensional arrays. The idea of the EKMR scheme is based on the Karnaugh map.
Hence, the EKMR(n) has the same representation as the TMR(n), where n = 1 and 2. Let
A[k][i][ j] denotes an array based on the TMR(3) with a size of 3 × 4 × 5. In the EKMR(3),
the index variable i ′ is the same as the index variable i , whereas the index variable j ′ is a
combination of index variables j and k. The corresponding array A′ [4][15] based on the
EKMR(3) is shown in Figure 1. Let A[l][k][i][ j] denotes an array based on the TMR(4)
with a size of 2 × 3 × 4 × 5. In the EKMR(4), the index variable i ′ is a combination of
index variables l and i ; the index variable j ′ is a combination of index variables j and k.
Figure 2 illustrates a corresponding array A′ [8][15] based on the EKMR(4). Based on the
EKMR(4), we can generalize our results to multi-dimensional arrays with the dimension n,
where n > 4. Figure 3 shows the corresponding EKMR(6) array, which is represented by
six EKMR(4) arrays, of array A > [3][2][2][3][4][5] based on the TMR(6). A transformation
scheme, called matrix transformation method (MTM), for conversion between the TMR and
the EKMR schemes has been proposed in [20].

Figure 1. A 4 × 15 EKMR(3) array.
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Figure 2. An 8 × 15 EKMR(4) array.

Figure 3. An example of the EKMR(6) array.

3.2. The ECRS/ECCS methods

The ECRS/ECCS methods are used to compress an EKMR-based sparse array by a set of
three one-dimensional arrays R, CK, and V . Given an EKMR(3) sparse array, the ECRS
(ECCS) method compresses all of non-zero array elements along the rows (columns for
ECCS). For the ECRS (ECCS) method, in the arrayR, R[0] is initialized to 1. Then, R[i +
1] = R[i] + Ri , where Ri is the number of non-zero array elements in the row i (column
for ECCS). Hence, the number of non-zero array elements in row i (column for ECCS) can
be calculated by subtracting the value of R[i] from R[i + 1]. The array R can be used to
point out the start position in arrays CK and V for each row (column for ECCS). Arrays,
CK and V , store the column (row for ECCS) indices and the values for all of non-zero array
elements, respectively. An example of the ECRS/ECCS methods for an EKMR(3) sparse
array is given in Figure 4. For an EKMR(4) sparse array, the ECRS/ECCS methods are
similar to those of an EKMR(3) sparse array. Given an EKMR(k) sparse array, where k >

4, in the ECRS/ECCS methods, each EKMR (4) sparse array is compressed by using arrays
R, CK, and V first. Then, a pointer array is used to link arrays R, CK, and V of each EKMR
(4) sparse array. An example is shown in Figure 5.

4. The SFC, the CFS, and the ED schemes for EKMR-based sparse arrays

In the SFC, the CFS, and the ED schemes, a global sparse array will be partitioned into
local sparse arrays by using partition methods first. Different partition methods may lead
to different performance for these three schemes. Therefore, how to select an appropriate
partition method is an important issue. It is an interesting topic and our future work. In
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Figure 4. The ECRS/ECCS methods for an EKMR (3) sparse array.

Figure 5. The ECRS method for an EKMR (6) sparse array.

this section, we use the 2D mesh partition without load-balancing method [21] as a sample
to describe these three schemes. For an EKMR-based sparse array, the 2D mesh partition
without load-balancing method is similar to (∗, . . . , Block, Block). The procedures of the
SFC, the CFS, and the ED schemes based on this partition method are similar to those based
on the row partition, the column partition, and the 2D mesh partition with load-balancing
methods. Assume that a sparse array A′ based on the EKMR(3) shown in Figure 6 is stored
in a host processor. Our goal is to distribute the sparse array A′ to a 2 × 2 processor array
(represented by processors P0,0, P0,1, P1,0, P1,1).

4.1. The SFC scheme

In the data partition phase, the sparse array A′ is partitioned into four local sparse arrays
in a host processor first. Then, all of local sparse arrays in a host processor are sent to
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Figure 6. A 4 × 16 sparse array A′ based on the EKMR(3).

Figure 7. An example of the SFC scheme for sparse array A′.

corresponding processors in the data distribution phase, respectively. Finally, each local
sparse array in a processor is compressed by using the ECRS/ECCS methods in the data
compression phase. Figure 7 shows an example of the SFC scheme for sparse array A′. In
Figure 7(a), the sparse array A′ is partitioned into four local sparse arrays; in Figure 7(b),
each processor receives the corresponding local sparse array; in Figure 7(c), each local
sparse array in a corresponding processor is compressed into arrays R, CK, and V by using
the ECCS method.

4.2. The CFS scheme

The data partition phase of the CFS scheme is the same as that of the SFC scheme. Then,
each local sparse array in a host processor is compressed by using the ECRS/ECCS methods
in the data compression phase. In the data distribution phase, arrays R, CK, and V of each
local sparse array are packed into a buffer and then sent to the corresponding processor.
Many communication methods [15, 26] have been proposed and can be used to send buffers
to processors. In order to simplify the comparisons, the buffers are sent to processors in
sequence. After receiving the corresponding buffer, each processor unpacks it to get arrays
R, CK, and V . Since the values stored in the array CK are global array indices, they need to
be converted to local array indices when each processor unpacks the received buffer. In the
ECRS (ECCS) method, each processor Pi j revises each value stored in the array CK to the
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Figure 8. An example of the CFS scheme for sparse array A′.

corresponding local array index by subtracting c1, where c1 is the total number of columns
(rows for ECCS) in processors Pi,0, Pi,1, . . . , Pi, j−1 (P0, j , P1, j , . . . , Pi−1, j for ECCS).

Figure 8 shows an example of the CFS scheme for sparse array A′. The partition results
of the CFS scheme are the same as those of the SFC scheme. In Figure 8(a), each local
sparse array is compressed into arrays R, CK, and V by using the ECCS method; the data
distribution phase of the processor P1,0 as a sample is shown in Figure 8(b). In Figure 8(b),
the processor P1,0 revises each value stored in the array CK to the local array index by
subtracting 2. For processors P0,0, P0,1, and P1,1, the data distribution phase is similar to
that of the processor P1,0, respectively.

4.3. The ED scheme

The data partition phase of the ED scheme is the same as that of the SFC scheme. In the
encoding step, each local sparse array is encoded into a special buffer B. Figure 9 shows the
formats of special buffer B for sparse array A′. In Figure 9, for the ECRS (ECCS) format,
the R′

i is used to store the number of non-zero array elements in row (column for ECCS) i .
The C ′

i j and the V ′
i j are used to store the column (row for ECCS) index and the value for

the j th non-zero array element in row (column for ECCS) i , respectively. The C ′
i j and the

V ′
i j are alternately stored in the special buffer B and each C ′

i j is a global array index. In the
data distribution phase, these special buffers B are sent to processors in sequence. In the
decoding step, each buffer B in a corresponding processor is decoded to get arrays R, CK,
and VL. To get the array R, in each processor, R[0] is first initialized to 1. Then, R[i + 1] =
R[i] + Ri . To get arrays CK and V , all of the C ′

i, j and the V ′
i, j are moved to arraysCK and

V , respectively. Since each C ′
i, j is a global array index, in the ECRS (ECCS) format, each

processor Pi, j converts each C ′
i, j to a local array index by subtracting c2 from each C ′

i, j ,
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Figure 9. The formats of special buffer B for sparse array A′.

Figure 10. An example of the ED scheme for sparse array A′.

where c2 is the total number of columns (rows for ECCS) in processors Pi,0, . . . , Pi, j−1

(P0, j , . . . , Pi−1, j for ECCS).
Figure 10 shows an example of the ED scheme for sparse array A′. The partition results

of the ED scheme are the same as those of the SFC scheme. Figure 10(a) shows the special
buffers B for local sparse arrays in the ECCS format. Figure 10(b) shows the special buffer B
received by each processor. Figure 10(c) only shows the decoding step for the processorP1,0

as a sample. The processorP1,0 subtracts 2 from C ′
0,0, C ′

4,0, C ′
4,1, C ′

5,0, and C ′
5,1 to convert

them to the local array indices. For processorsP0,0, P0,1, and P1,1, the decoding step is
similar to that of the processorP1,0, respectively. For EKMR-based sparse arrays with the
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dimension n, where n > 3, the SFC, the CFS, and the ED schemes are similar to those of
sparse array A′, respectively.

5. Theoretical analysis

In this section, we first analyze the theoretical performance of the SFC, the CFS, and the
ED schemes for EKMR-based sparse arrays based on four partition methods in terms of the
data distribution and the data compression time. Then, we compare these three schemes
for TMR- and EKMR-based sparse arrays. Due to page limitation, we do not present the
analysis procedure of these three schemes for TMR-based sparse arrays in this paper. The
similar procedure can be found in [20]. Here, we also do not show the theoretical analysis
results of these three schemes for TMR- and EKMR-based sparse arrays by using the CCS
and the ECCS methods. The theoretical performance of them is similar to that of the CRS
and the ECRS methods, respectively. Table 1 lists the notations used in this section. For
an array element in these three schemes, it may do memory access or addition operator or
subtraction operator, or etc. The time of doing addition operator, subtraction operator, and
memory accessis are not the same. In order to simplify the analysis results, we use TOperation

to present the average time of doing an operator for an array element. TDistribution includes
the packing/unpacking time and send/receive time. In the ED scheme, TCompression includes
the encoding/decoding time. For the 2D mesh partition method, the p processors are treated
as an r × q processor array. The sparse ratio si for a local sparse array l in a processor pi

is the number of non-zero array elements of l divided by the number of array elements of
l. The largest sparse ratio in the set S is denoted as s ′. The space ratio αi for a local sparse
array l in a processor pi is the size of l divided by the size of sparse array A′. The largest
space ratio in the set α is denoted as α′ and the size of largest local sparse array is r ′ × q ′.

Assume that an n3 sparse array A′ based on the EKMR (3) is stored in a host processor
and our goal is to distribute it to p processors. The number of non-zero array elements of
sparse array A′ is sn3 and we assume that the sparse probability [13] for each array element
is equal.

Table 1. The notations used in the theoretical analysis

Notations Descriptions

A′ A global sparse array
p The number of processors
s The sparse ratio of sparse array A′
TStartup The startup time of a communication channel
TData The transmission time of sending an array element
TOperation The average time of doing an operator for an array element
TDistribution The data distribution time in the data distribution phase
TCompression The data compression time in the data compression phase
S = {si | i = 0, 1, . . . p − 1} The set of sparse ratios of local sparse arrays for each processor pi

α = {αi | i = 0, 1, . . . p − 1} The set of space ratios of local sparse arrays for each processor pi
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5.1. The row partition method

A. The SFC scheme. In the data partition phase, the row partition method partitions sparse
array A′ into p local sparse arrays and the size of each local sparse array is �n/p�×n2. The
largest number of non-zero array elements among local sparse arrays is �n/p�×n2×s ′. In the
data distribution phase, all of local sparse arrays in a host processor are sent sequentially to
the corresponding processors without being packed since array elements of each local sparse
array are not stored in consecutive memory locations. TDistribution = p × TStartup +n3 × TData.
In the data compression phase, all of local sparse arrays in the corresponding processors are
compressed simultaneously by using the ECRS method. In the ECRS method, we first scan
an entire local sparse array to find all of non-zero array elements. Then, we record them to
arrays R, CK, and V . TCompression = (�n/p� × n2 × (1 + 3s ′)) × TOperation.

B. The CFS scheme. After the data partition phase, in the data compression phase, each
local sparse array in the host processor is sequentially compressed by using the ECRS method
until all of local sparse arrays are compressed. TCompression = (n3 × (1 + 3s)) × TOperation.
In the data distribution phase, each local compressed array is packed into a buffer and
then sequentially sent to the corresponding processor until all of local compressed arrays
are sent to processors. All buffers in all processors are simultaneously unpacked to get
arrays R, CK, and V . For the ECRS method, no conversion is needed. The packing time is
(2n3s + n + p) × TOperation, the send/receive time is p × TStartup + (2n3s + n + p) × TData,
and the unpacking time is ((�n/p� × n2 × (2s ′ + 1/n2)) + 1) ×TOperation.TDistribution =
p×TStartup+(2n3s+n+p)×TData+(2n3s+(�n/p�×n2×(2s ′+1/n2))+n+p+1)×TOperation.

C. The ED scheme. After the data partition phase, in the encoding step, each local sparse
array in a host processor is sequentially encoded into special buffers B in the ECRS format
until all of local sparse arrays are encoded into special buffers B. The encoding time
is (n3 × (1 + 3s)) × TOperation. In the data distribution phase, each special buffer B is
sequentially sent to the corresponding processor without being packed until all of buffers
B are sent to processors. TDistribution = p × TStartup + (2n3s + n) × TData. In the decoding
step, these special buffers B in all processors are simultaneously decoded to get arrays
R, CK, and VL. For the ECRS format, no conversion is needed. The decoding time is
((�n/p�×n2×(2s ′+1/n2))+1)×TOperation. TCompression = ((n3×(1+3s))+ (�n/p�×n2×(2s ′

+ 1/n2)) + 1)×TOperation.
Assume that two nkk-dimensional sparse arrays based on the TMR and the EKMR

schemes, where k > 2, are stored in a host processor and our goal is to distribute them
to p processors. Table 2 lists the data distribution and the data compression time of the
SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by using
the row partition method. In order to simplify the theoretic analysis results, in Table 2, we
use symbols N , M , and M‘ to substitute symbols nk , �n/p� × nk−1, and �n/p� × nk−2

(�n/p� × n2 for k = 3), respectively.

D. Discussions. From Table 2, for the data distribution time in EKMR-based sparse
arrays, we first can see that TDistribution(ED) is less than TDistribution(CFS). Second,
TDistribution(ED) is less than TDistribution(SFC) if the sparse ratio s of a global sparse
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Table 2. The data distribution and the data compression time of the SFC, the CFS, and the ED schemes in the
row partition method

Scheme Method Complexity Cost

TMR SFC TDistribution p × TStartup + N × TData + N × TOperation

(CRS) TCompression (M × (1 + (k + 1)s′)) × TOperation

CFS TDistribution p × TStartup + (ks N + n + p) × TData + ((N × (ks))
+(M × (ks′ + 1/nk−1)) + n + p + 1) × TOperation

TCompression (N × (1 + (k + 1)s)) × TOperation

ED TDistribution p × TStartup + (ks N + n) × TData

TCompression ((N × (1 + (k + 1)s)) + (M × (ks′ + 1/nk−1)) + 1 × TOperation

EKMR SFC TDistribution p × TStartup + N × TData (if k = 3 or 4) or
(ECRS) p × TStartup + N × TData + N × TOperation (if k > 4)

TCompression (M ′ × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2s N + nk−2 + pnk−4) × TData + (2s N + (M ′×
(2s′ + 1/n2)) + nk−2 + nk−4 + pnk−4) × TOperation

TCompression (N × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2s N + nk − 2) × TData

TCompression ((N × (1 + 3s)) + (M ′ × (2s′ + (1/n2))) + nk − 4) × TOperation

array is less than 0.5. Finally, TDistribution(CFS) is less than TDistribution (SFC) if TData >

(2s/(1 − 2s))TOperation and TData > TOperation when k = 3 or 4 and k > 4, respectively. In
[22], we have shown that s < 0.5 if we want to use the ECRS method to compress EKMR-
based sparse arrays. It also shows that s < 0.1 for over 80% applications according to the
Harewell-Boeing Sparse Matrix Collection [11]. Moreover, in general, TData is larger than
TOperation on a distributed memory multicomputer. Therefore, we have two remarks.

Remark 1 TDistribution (ED) is less than TDistribution(SFC) and TDistribution(CFS).

Remark 2 TDistribution(CFS) is less than TDistribution(SFC) for most of applications.

There are two reasons. First, the data distribution time of the CFS and the ED schemes is
less than that of the SFC scheme since the SFC scheme sends entire local sparse arrays to
processors, yet the CFS and the ED schemes do not. Second, the data distribution time of
the ED scheme is less than that of the CFS scheme since the CFS scheme packs compressed
local sparse arrays into buffers before sending them to processors, yet the ED scheme does
not.

For the data compression time in EKMR-based sparse arrays, we have a remark.

Remark 3 TCompression(SFC) is less than TCompression(CFS) that is less than TCompression (ED).

The reason is that the SFC scheme simultaneously compresses all of local sparse arrays in
the corresponding processors by using the ECRS method, yet the CFS and the ED schemes
directly and indirectly compress them sequentially in a host processor, respectively.

For the overall performance in EKMR-based sparse arrays, we have two remarks.

Remark 4 The ED scheme outperforms the CFS scheme.
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Remark 5 When k = 3 or 4, the ED and the CFS schemes outperform the SFC scheme if
TData > ((1 + 3s)/(1 − 2s))TOperation and TData > ((1 + 5s)/(1 − 2s)) TOperation, respectively.
When k > 4, the ED and the CFS schemes outperform the SFC scheme if TData > (3s/(1 −
2s))TOperation and TData > (5s/(1 − 2s))TOperation, respectively.

For TMR- and EKMR-based sparse arrays, we have three remarks.

Remark 6 The data distribution time of the SFC, the CFS, and the ED schemes for EKMR-
based sparse arrays is less than that for TMR-based sparse arrays, respectively.

Remark 7 The data compression time of the SFC, the CFS, and the ED schemes for
EKMR-based sparse arrays is less than that for TMR-based sparse arrays, respectively.

Remark 8 The SFC, the CFS, and the ED schemes for EKMR-based sparse arrays outper-
form those for TMR-based sparse arrays, respectively.

There are two reasons. First, the data compression time of the SFC, the CFS, and the ED
schemes for EKMR-based sparse arrays is less than that for TMR-based sparse arrays since
an EKMR-based sparse array is compressed into less number of one-dimensional arrays
than that of a TMR-based sparse array. In [22], we have shown that the number of one-
dimensional arrays used in the ECRS method does not increase as the dimension increases,
yet it increases as the dimension increases for the CRS method. Second, the cache effect of
scanning an EKMR-based sparse array is better than that of scanning a TMR-based sparse
array. The data locality of EKMR-based sparse arrays is better than that of TMR-based
sparse arrays [21].

5.2. The column partition method

In the column partition method, the size of each local sparse array based on the EKMR
scheme is �n2/p� × n. The largest number of non-zero array elements among local sparse
arrays is

⌈
n2/p�×n×s ′. Table 3 lists the data distribution and the data compression time of

the SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by using
the column partition method, respectively. In Table 3, we use symbols N , M , and M ′ to
substitute symbols nk , �n/p� × nk−1, and T �n2/p� × nk−2, respectively. For the CFS and
the ED schemes, the values stored in the array CK and the C ′

i, j are not local array indices
in this case. The revision is needed. From Table 3, we have the following remark and the
same observations as those of Remarks 1–8.

Remark 9 When k > 2, the ED and the CFS schemes outperform the SFC scheme if
TData > (3s/(1 − 2s))TOperation and TData > (5s/(1 − 2s))TOperation, respectively.

5.3. The 2D mesh partition without load-balancing method

In this partition method, the size of each local sparse array based on the EKMR scheme is
�n/r� × �n2/q�. The largest number of non-zero array elements among local sparse arrays
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Table 3. The data distribution and the data compression time of the SFC, the CFS, and the ED schemes in the
column partition method

Scheme Method Complexity Cost

TMR SFC TDistribution p × TStartup + N × TData + N × TOperation

(CRS) TCompression (M × (1 + (k + 1)s′)) × TOperation

CFS TDistribution p × TStartup + (ks N + pn + p) × TData + ((N × (ks))
+(M × (k + 1)s′) + pn + p + n + 1) × TOperation

TCompression (N × (1 + (k + 1)s)) × TOperation

ED TDistribution p × TStartup + (ks N + pn) × TData

TCompression ((N × (1 + (k + 1)s)) + (M × (k + 1)s′) + n + 1) × TOperation

EKMR SFC TDistribution p × TStartup + N × TData + N × TOperation

(ECRS) TCompression (M ′ × (1 + 3s′)) × TOperation

CFS TDistribution p × TStartup + (2s N + pnk−2 + pnk−4) × TData + (2s N + (M ′ × 3s)
+ nk−2 + pnk−2 + pnk−4 + nk−4) × TOperation

TCompression (N × (1 + 3s)) × TOperation

ED TDistribution p × TStartup + (2s N + pnk−2) × TData

TCompression ((N × (1 + 3s)) + (M ′ × 3s′) + nk−2 + nk−4) × TOperation

Table 4. The data distribution and the data compression time of the SFC, the CFS, and the ED schemes in the
2D mesh partition without load-balancing method

Scheme Method Complexity Cost

TMR SFC TDistribution r × q × TStartup + N × TData + N × TOperation

(CRS) TCompression (M × (1 + (k + 1)s′)) × TOperation

CFS TDistribution r × q × TStartup + (ks N + qn + rq) × TData + ((N × (ks))
+ (M × (k + 1)s′) + �n/r� + qn + rq + 1) × TOperation

TCompression (N × (1 + (k + 1)s)) × TOperation

ED TDistribution r × q × TStartup + (ks N + qn + rq) × TData((N × (1 + (k + 1)s))
TCompression + (M × (k + 1)s′) + �n/r� + 1) × TOperation

EKMR SFC TDistribution r × q × TStartup + N × TData + N × TOperation

(ECRS) TCompression (M ′ × (1 + 3s′)) × TOperation

r × q × TStartup + (2Ns + qnk−2 + rq) × TData+
CFS TDistribution (2s N + (M ′ × (3s′)) + (�n2/r� × nk−4) + qnk−2 + rqnk−4 + nk−4)

× TOperation

TCompression (N × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2s N + qnk−2) × TData

TCompression ((N × (1 + 3s)) + (M ′ × (3s′)) + (�n2/r � × nk−4) + nk−4) × TOperation

is �n/r� × �n2/q� × s ′. Table 4 lists the data distribution and the data compression time
of the SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by
using the 2D mesh partition without load-balancing method, respectively. In Table 4, the
symbols N , M , and M‘ are used to substitute symbols nk , �n/r� × �n/q� × nk−2, and
�n2/r�×�n2/q�×nk−4 (�n/r�×�n2/q� for k = 3), respectively. In this case, the revision
for the CFS and the ED schemes is needed. From Table 4, we have the same observations
as those of Remarks 1–4 and 6–9.
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Table 5. The data distribution and the data compression time of the SFC, the CFS, and the ED schemes in the
2D mesh partition with load-balancing method

Scheme Method Complexity Cost

TMR SFC TDistribution r × q × TStartup + N × TData + N × TOperation

(CRS) TCompression (N × (a′ + Ms)) × TOperation

CFS TDistribution r × q × TStartup + (ks N + qn + rq) × TData+
((N × (k + M)s) + r ′ + qn + rq + 1) × TOperation

TCompression (N × (1 + (k + 1)s)) × TOperation

ED TDistribution r × q × TStartup + (ks N + qn) × TData

TCompression ((N × (1 + (k + M + 1)s)) + r ′ + 1) × TOperation

EKMR SFC TDistribution r × q × TStartup + N × TData + N ′ × TOperation

(ECRS) TCompression (N × (a′ + M ′s)) × TOperation

CFS TDistribution r × q × TStartup + (2s N + qnk−2 + rq) × TData+
((N × (2 + M ′)s) + r ′nk−4 + qnk−2 + rq + nk−4)

× TOperation

TCompression (N × (1 + 3s)) × TOperation

ED TDistribution r × q × TStartup + (2s N + qnk−2) × TData

TCompression ((N × (1 + (3 + M ′)s)) + r ′nk−4 + nk−4) × TOperation

5.4. The 2D mesh partition with load-balancing method

The analysis procedure of the SFC, the CFS, and the ED schemes in the 2D mesh partition
with load-balancing method is different to those of other partition methods above. The
details of the analysis procedures of these three schemes in this partition method can be
found in [23]. We briefly describe it here. In this partition method, the number of non-zero
array elements for each local sparse array based on the EKMR scheme is sn3/(r × q). The
size of largest local sparse array is α′n3. Table 5 lists the data distribution and the data
compression time of the SFC, the CFS, and the ED schemes for TMR- and EKMR- based
sparse arrays by using the 2D mesh partition with load-balancing method, respectively. In
Table 5, the symbols N , M , and M‘ are used to substitute symbols nk , (k + 1)/(r × q),
and 3/(r × q), respectively. In this case, the revision is needed for the CFS and the ED
schemes. From Table 5, we have the following remark and the same observations as those
of Remarks 1–4 and 6–8.

Remark 10 When k > 2, the ED and the CFS schemes outperform the SFC scheme if
TData > ((3s −α′)/(1−2s))TOperation and TData > ((5s −α′)/(1−2s))TOperation, respectively.
(1/(rq) ≤ α′ < 1)

6. Experimental results

In the experimental test, we implement the SFC, the CFS, and the ED schemes for TMR-
and EKMR-based sparse arrays by using the CRS and the ECRS methods on an IBM SP2
parallel machine. This system uses an IBM RISC System/6000 POWER2 CPU with a clock
rate of 66.7 MHz. There are 40 IBM POWER2 nodes in this system, and each node has a
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128 KB first-level data cache, a 32 KB first-level instruction cache, and 128 MB of physical
memory. All programs are written in C+ MPI (Message Passing Interface) codes. Due to
page limitation, we only show the experimental results of these three schemes for TMR-
and EKMR-based sparse arrays with the dimension 3 and sparse ratio 0.1.

6.1. The row partition method

Figure 11 shows the data distribution, the data compression, and the overall time of the
SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by using the
row partition method. For EKMR-based sparse arrays, from Figure 11(a), we can see that
the data distribution time of the ED scheme is less than that of the CFS scheme that is less
than that of the SFC scheme first. This result matches Remarks 1 and 2. Second, the data
compression time of the SFC scheme is less than that of the CFS scheme that is less than
that of the ED scheme from Figure 11(b). This result matches Remark 3. Finally, the overall
time of the ED scheme is less than that of the CFS scheme from Figure 11(c). We also can
see that the overall time of the SFC scheme is less than that of the CFS and the ED schemes.
The reason is that the conditions TData > (13/8)TOperation and TData > (15/8)TOperation for the
ED and the CFS schemes shown in Remark 5 are not satisfied. In the experimental test, TData

Figure 11. The data distribution, the data compression, and the overall time of the SFC, the CFS, and the ED
schemes for TMR- and EKMR-based sparse arrays by using the row partition method.
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is about equal to 1.2TOperation that is estimated from Figure 11 and Table 2. These results
match Remarks 4 and 5.

For TMR- and EKMR-based sparse arrays, from Figure 11, we can see that the data
distribution, the data compression, and the overall time of the SFC, the CFS, and the
ED schemes for EKMR-based sparse arrays is less than that of TMR-based sparse arrays,
respectively. These results match Remarks 6–8.

6.2. The column partition method

Figure 12 shows the data distribution, the data compression, and the overall time of the
SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by using the
column partition method. For EKMR-based sparse arrays, from Figures 12(a) and (b), the
experimental results match Remarks 1–3. From Figure 12(c), we can see that the overall time
of the ED scheme is less than that of the CFS scheme that is less than that of the SFC scheme.
The reason is that the conditions TData > (3/8)TOperation and TData > (5/8)TOperation for the
ED and the CFS schemes shown in Remark 9 are satisfied. These results match Remarks 4
and 9. From Figure 12, for TMR- and EKMR-based sparse arrays, the experimental results
match Remarks 6–8.

Figure 12. The data distribution, the data compression, and the overall time of the SFC, the CFS, and the ED
schemes for TMR- and EKMR-based sparse arrays by using the column partition method.
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Figure 13. The data distribution, the data compression, and the overall time of the SFC, the CFS, and the
ED schemes for TMR- and EKMR-based sparse arrays by using the 2D mesh partition without load-balancing
method.

6.3. The 2D mesh partition without load-balancing method

Figure 13 shows the data distribution, the data compression, and the overall time of the
SFC, the CFS, and the ED schemes by using the 2D mesh partition without load-balancing
for method TMR- and EKMR-based sparse arrays. From Figure 13, for EKMR-based sparse
arrays, the experimental results match Remarks 1–4 and 9; for TMR- and EKMR-based
sparse arrays, the experimental results match Remarks 6–8.

6.4. The 2D mesh partition with load-balancing method

Figure 14 shows the data distribution, the data compression, and the overall time of the
SFC, the CFS, and the ED schemes for TMR- and EKMR-based sparse arrays by using
the 2D mesh partition with load-balancing method. For EKMR-based sparse arrays, from
Figures 14(a) and (b), the experimental results match Remarks 1–3. From Figure 14(c),
we can see that the overall performance of the ED scheme is better than that of the CFS
scheme that is better than that of the SFC scheme. The reason is that the conditions TData >
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Figure 14. The data distribution, the data compression, and the overall time of the SFC, the CFS, and the ED
schemes for TMR- and EKMR-based sparse arrays by using the 2D mesh partition with load-balancing method.

((3–10α′)/8)TOperation and TData > ((5-10α′)/8)TOperation for the ED and the CFS schemes
shown in Remark 10 are satisfied. In the experimental test, α′ is about equal to 1/(rq), where
rq is the total number of processors. These results match Remarks 4 and 10. From Figure 14,
for TMR- and EKMR-based sparse arrays, the experimental results match Remarks 6–8.

From the theoretical analysis and experimental results, in Table 6, we conclude the com-
parisons of the SFC, the CFS, and the ED schemes for EKMR-based spare arrays by using
various partition methods. The concluded results are assumed that the conditions in Remarks
2, 5, 9, and 10 are satisfied. For EKMR-based sparse arrays, these three schemes outperform
those of TMR-based sparse arrays by using various partition methods, respectively.

6.5. Data parallel programs for multi-dimensional sparse array operations

In this section, we also implement data parallel programs for sparse array operations: matrix-
matrix addition and matrix-matrix multiplication, which are discussed in our previous work
[21, 22]. In data parallel programming paradigm, in general, we distribute array elements to
processors based on various distribution schemes (phase 1), do local computation in each
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Table 6. The comparisons of the SFC, the CFS, and the ED schemes for EKMR-based sparse arrays by using
various partition methods

2D mesh without 2D mesh with
Time Methods Row partition Column partition load-balancing load-balancing

TDistribution SFC Worst Worst Worst Worst
CFS Middle2 Middle2 Middle2 Middle2

ED Best1,2 Best1,2 Best1,2 Best1,2

TCompression SFC Best3 Best3 Best3 Best3

CFS Middle Middle Middle Middle
ED Worst Worst Worst Worst

Overall SFC Worst Worst Worst Worst
CFS Middle5 Middle9 Middle9 Middle10

ED Best4,5 Best4,9 Best4,9 Best4,10

1Remark1, 2Remark 2, 3Remark 3, 4Remark 4, 5Remark 5, 9Remark 9, 10Remark 10.

Figure 15. The execution time of matrix-matrix addition and matrix-matrix multiplication for TMR- and EKMR-
based sparse arrays in the row partition method.

processor (phase 2), and collect computation results from each processor (phase 3). Hence,
in phase 1, we use the SFC, the CFS, and the ED schemes for TMR- and EKMR-based
sparse arrays by using row partition and column partition methods. In order to simplify
the comparisons, we only consider compressing one of two sparse arrays for sparse array
operations.

Figure 15 shows the execution time of matrix-matrix addition and matrix-matrix multipli-
cation for TMR- and EKMR-based sparse arrays with various array sizes in the row partition
method on 16 processors. From Figure 15, we first can the execution time of matrix-matrix
addition and matrix-matrix multiplication for EKMR-based sparse arrays by using the SFC,
the CFS, and the ED schemes is less than that of TMR-based sparse arrays, respectively.
Second, for EKMR-based sparse arrays, we can see that the execution time of matrix-matrix
addition and matrix-matrix multiplication of the SFC scheme is less than that of the CFS
and the ED schemes. The reason is that the time of the SFC scheme is less than that of the
CFS and the ED schemes in phase 1. This result has been shown in Figure 11(C). Figure 16
shows the execution time of matrix-matrix addition and matrix-matrix multiplication for
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Figure 16. The execution time of matrix-matrix addition and matrix-matrix multiplication for TMR- and EKMR-
based sparse arrays in the column partition method.

TMR- and EKMR- based sparse arrays with various array sizes in the column partition
method on 16 processors. From Figure 16, for TMR- and EKMR-based sparse arrays, we
also can the same observations as those of Figure 15. For EKMR-based sparse arrays, the ex-
ecution time of matrix-matrix addition and matrix-matrix multiplication of the SFC scheme
is less than that of the CFS and the ED schemes. This result matches that shown in Figure
12(c).

7. Conclusions

In this paper, we have extended the CFS and the ED schemes for TMR-based sparse arrays
to EKMR-based sparse arrays first. Then, we have compared the performance of the CFS
and the ED schemes with that of the SFC scheme by using the Block partition methods.
Finally, we have compared the performance of these three schemes for EKMR-based sparse
arrays with that of TMR-based sparse arrays. For most of test EKMR-based sparse arrays, the
ED scheme outperforms the CFS scheme that outperforms the SFC scheme. For all of test
cases, these three schemes for EKMR-based sparse arrays outperform those of TMR-based
sparse arrays, respectively. This result encourages us to design data parallel algorithms of
sparse array operations for EKMR-based sparse arrays.

In the future, we plan to work on the following directions. (1) Design efficient data
parallel algorithms of other sparse array operations for EKMR-based sparse arrays. (2)
Analyze the performance of the SFC, the CFS, and the ED schemes by using the Cyclic
partition methods. We believe that these two directions are of importance in parallel sparse
array operations.
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